PARADIGM*

WORKS

@Verifier Evaluation

Revision 1.2

Paradigm Works Inc.

@Verifier Evaluation

W DN =

4.1.1
4.1.2
4.1.3
4.1.3.1
4.1.3.2
4.1.3.3
4.1.4
4.1.5
4.2
4.2.1
4.2.2

5.1
5.1.1
5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.2.3
5.2.3
5.3

5.4

5.5

5.6

5.7

5.8

5.9
5.10

6

7

8

Table of Contents

B eN o Ts 1R et nTe) o DR PPPPPPPPPPP 5
Ly (I Y0 (o1 SRR PPPPPPPPPPP 5
Test Case & CONAITIONSceuiiiiiiiiiiiiiiieiiieeieeeeereeeeeeteereeeererereereararre—ererre—..—.....r..—..———————————. 5
@VETIIET TNPULS oovvvinieeeiiieeeeiicee et e e et e e e e e e e e ee e e e e e e eeeaseaeeeeeaseennaees 6
Command HINe SWILCRES.uuuuuuiiiiieiiiiiiiiiiiiii e nnan 7
Runtime Mode SWItChES.........oiiiiiiiiiiiiiieec et e e e eaeens 7
@Verifier Option SWILCHESccciiiiiiiiiiiiee ettt eeeeaaeees 9
Input files of @VErIfIeruuveeiiiiiiiiiiieee et 12
Verilog Constraint Fale.........coooiiiiiiiiiiiiiiiie ettt 12
ALAAAPTIVE.ECL SCIIPE ..evvviiieeieieeeeee et e e e e e e e e e e 13
Synchronizer Information File ..o 13
Standard Assertion LanguUages......cccceiiiiveviiieeeeeeeiiiiiiee e e e eeeeeee e e e e 15
Random Simulation Feature...........ccccovieeeiiiiiiiiiiiieeceieee e 16
@VETIIETr OULPUL ..cevviiieeiei ettt e e e e e e e e e e e e e e e e e eeer e ens 16
ALVEIIFIET.JOG FI1E .. ooviiiieei i 16

AV _CRECKS. P TILE .ot 16
AFV (Automatic Functional Verification)cccueevveeieeoieeieeeeieeeee e e eeee e 17
FSM (Finite State Machine) ANalySis.....cocoueieoueeioeeeeieeeeeeeeeeeeeeeeeeeeiee e seeeeseeee e 17
FSM Testcase ObSErvatiOnS.........uviiiiiiiiiiiiiiiiiieieieeereeeeeeerererereerererrrerrrrrrrre———————————————. 17
Multiple Clock Domain ANalySIS.....ccceeeiiiiiiuiiiieeeeeiiiiiiiiieeeeeeeeeeeieeeeeeeeeeeeieeeeeeeeeeeeaaaans 19
Multi-clock domain synchronization verification...........cccceeeeueeunennnniiiiiiiiieeeseeeseeennn 19
Synchronization Model ChecCKINg.............ouuuiieiiiiiiiiiiiiieeeeeeeeeiciee e 22
Data Stability across clock dOmaincoeeeiiiiiiiiiiiiieieeeecee e e 22
Stability of signals on the Bus...........cooiiiiiiiiiiiiiii e 23
Overlap between read and write pointer in FIFOSsccoooooiiiiiiiiiiiiiiiiiiciee e 23
Invoking @Verifier clock analysisceeeeeiiiiiiiiiiiieeeeeeieeeiieee e 23
Multi-Cycle Path (MCP) 10ZIC........cccuiiiuieeeeeieeeeee et enees 25
False timing path 10ZIC........oiiiiiiiiiiiiieee et e e 26
Parallel and full case StatementScooceeiiiiiiiiiiieeeeeeeieiieee e e 27
Redundant latch pairs & unintended latch..............ccoovieeiiiiiiiiiiii e, 28
ONE MO ATIVETS. . eiieeeeeeeeeeeeeeeeeeeeee 29
INdeX OUL OF FANZE «.oovviviiiieee et ettt e e e e et e e e e e e e eaaaaann 29
FIFO VerifiCationcccceeeeeeeeeeeeeceeeeeeeeee ettt 29
ReaChADIIIEYuueiiiiieee e 29
Result Viewing and Debugging with @Designer...............oovvvviieeeeieiiiiiiiiieeeeeeeeeeiieee e 30
L0700 o1 1F =3 Te) o W U U U PSP P PUPUUUR 31
Appendix At FSM Testcase Source Verilogcooeeeiiiiiiiiiiiieeeieiiiiiiiiieeeeeeeeeeieeee e 33

Revision 1.2 Paradigm Works Inc. Page 2 of 35

@Verifier Evaluation

List of Figures

Figure 4-1: @Verifier flow overview 6
Figure 4-2: Constraint module example 12
Figure 4-3: CLOCK_INFO synchronizer pragma 13
Figure 4-4: SYNCHRONIZER_CHECK_FILTER_INFO synchronizer pragma 13
Figure 4-5: SYNCHRONIZER_RANK_INFO synchronizer pragma 14
Figure 4-6: SYNCHRONIZER_CONFIG_REG_INFO synchronizer pragma 14
Figure 4-7: Example of user-defined properties file (design_name.p) 15
Figure 4-8: Enabling and Disabling property checks using inline pragmas 15
Figure 5-1: Verifier Window invoked by the +guicommand line option 18
Figure 5-2: Synchronizer with logic after the source register 19
Figure 5-3: Synchronizer without logic after the source register 20
Figure 5-4: Synchronization with source clock domains muxing 21
Figure 5-5: Rate change FIFO synchronization 22
Figure 5-6: MCP example from @Verifier Training v.2.5 26
Figure 5-7: False timing path example. 27
Figure 5-8: Full case example 28
Figure 5-9: Redundant latch example 28
Note: Some figures were gleaned from @HDL reference documents.

Revision 1.2 Paradigm Works Inc. Page 3 of 35

@Verifier Evaluation

List of Tables
Table 4-1: Testcase runtimes with and without +size_reduction 9
Table 4-2: Hierarchical model checking using the DUT-Module2 testcase. 10
Table 4-3: DUT-Module2 testcase ran with the +data_path switch 10
Table 4-4: BMC using the DUT-Modulel testcase 11
Table 4-5: No reachability analysis using the DUT-Modulel testcase 12
Table 4-6: DUT-Module2 testcase with and without random simulation 16

Revision 1.2 Paradigm Works Inc. Page 4 of 35

@Verifier Evaluation

1 Introduction

@HDL’s @Verifier is a functional verification tool that combines formal verification techniques with the
advantages of several verification methods. It incorporates DRC (Design Rule Checker) methods, formal
methods using automatically generated and user-generated properties, and random simulation. Formal
property checkers are most useful for finding bugs early in the design cycle, and @Verifier is most
effective when combined with the @Designer gui debug cockpit. @Designer was the focus of separate
evaluation writeup, which can be obtained from Paradigm Works. This evaluation therefore focuses
mostly on @Verifier features. @Verifier has several features to efficiently verify a design. With the
exception of random simulation, all of the features statically verify designs:

0 AFV (Automatic Functional Verification)

0 Property and constraint language

0 “Bounded” and “un-bounded”’ model checking

0 Random Simulation

0o DRCs (Design Rule Checks)

0 Result Viewing and Debugging using @Designer

We evaluated each of these features and the results are shown in the sections to follow.

2 References
@HDL's @Verifier Application Note: Managing Runtime
@Verifier Reference Manual v. 2.5.1
@Verifier Quick Start Guide v. 2.6
@Verifier Training v. 2.5
Paradigm Works’ @Designer Evaluation

3 Test Case & Conditions

For this evaluation, we ran @Verifier v2.8 with Red Hat Linux version 2.2.19 running on a HW platform
with dual Pentium Pro 1 GHz processors and 2GB of memory. We used a real design, hereafter referred
to as the DUT, to test most of the features, but we also created some testcase designs for particular
features of @Verifier that the DUT did not address or create interesting failures for (a couple of testcases
are from the @HDL reference documents). During our evaluation we mostly ran @Verifier at the module
level instead of the full chip (functional core only with RAMs black-boxed) because of long (day+), full-chip
runtimes (Note: these full chip runs were without any runtime speedup enhancements that are also
available in @Verifier like distributed processing across a server farm , the use of incremental model
checking, bounded model checking, no reachability analysis, etc., that could have shortened the long run
times).

The DUT has the following characteristics:
32-bit network microprocessor

~250K gates

Asynchronous multi-clock domains

DUT-Modulel characteristics:

Revision 1.2 Paradigm Works Inc. Page 5 of 35

@Verifier Evaluation

~40K gates

1 clock domain

1 RAM (64x128)

254 properties extracted with AFV only

o O o o

DUT-Module2 characteristics:
o0 ~83K gates
0 3 asynchronous clock domains
0 3 RAMs (512x32, 32x33, 128x40)
0 247 properties extracted with AFV only

4 @Verifier Inputs
Command
i line switches i
Verilog RTL -
files

i Constraints
i verilog file

atverifier.log file

i Local

i script

Synchronizer
i Info file :

i OVA, grasesease s :
i Accellera, : i Random

! @HDL : i Simulation

i proprietary femenesenenenennenst

i Language

Figure 4-1: @Verifier flow overview

Figure 4-1 shows some of the possible inputs, interactions, and outputs from an @Verifier run. We
explored in great detail how these inputs affect @Verifier's performance and how to interpret outputs
generated.

Revision 1.2 Paradigm Works Inc. Page 6 of 35

@Verifier Evaluation

4.1 Command line switches

The following command invokes the tool:

@pverifier <verilog arguments> <switches option> file

In addition to its own switches, @Verifier supports all of the regular Verilog command switches (e. -y, -v,
etc.).

4.1.1 Runtime Mode Switches

[+afv]

[+inline_prop] [+prop_file+<property file name>]
[+synchronizer_checks]
[+dxc] [+guil [+view] [+print_afv_checks]

+afv: Invokes AFV (Automatic Functional Verification) (Refer to Sec. 5)

+inline_prop: Tells the tool to look for @HDL assertions embedded in the RTL.
Currently the only language supported for inline usage is @HDL's assertion language
including @HDL'’s special extension (Refer to Sec. 4.1.3.1).

+prop _file: If there are user-specified properties in file, @Verifier can do model
checking on the properties in file using this switch. It will be explained more detail in
Sec. 4.1.4.

+synchronizer checks: It invokes all checks related to synchronizer (Refer to Sec.6.2.2)
only when there is no switch +synchronizer info. When switch +synchronizer info is
turned on in command line already, no matter the switch +synchronizer checksis used,
@Verifier will do all synchronizer related checks.

+dre: Invokes the DRC checker, which performs several design sanity checks:
= Full language support for Verilog
= Syntax and semantics checks
= Coding checks for simulation, synthesis, and timing

= Design practice checks for FSM (Finite State Machine), Flops, Latches,
Clocking

= Coding style checks

We found that in some cases like FSM unreachable state errors/failures (see Figure
5-1), DRC errors and AFV failures may flag the same issue. There is, however,
flexibility for users to turn off or on each individual DRC check by editing the
design_checks.tcl script, which is located in
$ATHDLROOT/apache/htdocs/athdl/tclscripts/.

For example:

@checks "$type.Flops.Resetable.Non-resetable" value off ;

@checks "$type.Flops.Asynchronous Reset.Asynchronous Reset" value on ;
@checks "$type.Coding.Bit Ordering.lsb -> msb" value off ;

@checks "$type.Coding.Bit Ordering.msb -> Isb" value on ;

These checks are well covered by the DRC checker and DRC errors do not stop the run.
Users can disable specific DRCs by editing the design_checks.tcl script. At the end of
the run, all DRC violations are sorted out by category (General, FSM, Flop, Latches,

Revision 1.2

Paradigm Works Inc. Page 7 of 35

@Verifier Evaluation

Logic, and Synthesis) and/or on a module basis. Most error messages are hyper-linked
to the source code and are generally informative and straightforward for quick debug.

Although you would expect the DRC checker to only get invoked by the +drc switch, it
also runs when the +guiswitch is used, even if the user did not specify the +drcswitch.

Revision 1.2 Paradigm Works Inc. Page 8 of 35

@Verifier Evaluation

0 +gui’Invokes @Designer at end of the @Verifier run.

0 +print_afv checks: When this switch is used, @Verifier does not actually run a formal
check for the properties. Instead it only generates the afiz checks.p file which contains
a listing of the AFV properties checks and user-specified properties that would run
against the design.

4.1.2 @Verifier Option Switches

0 +incd(+timeout+fail+error+pass)]]:

This switch allows users to run incremental jobs using the results of a previous run. The user can
specify to rerun only properties in specific results categories (ie. timeout, fail, error, or pass) or all of
the categories if one is not specified.

0 +tmeout:

This corresponds to the amount of time that @Verifier will spend attempting to verify each property.
It’s easy to see that a design with thousands of properties can take a long time to run depending on
the timeout value. Therefore, users can and should adjust the timeout value as appropriate. It’s
specified in seconds, and the default value is 45 seconds. We found that reachability properties are
the biggest time synchs during a run. So, it’s advisable to use the +no_reachability switch whenever
possible (see below for a description of the +no_reachability switch).

0 +size reduction’

Using this switch, @Verifier does size reduction optimization when proving each property. This
means that when attempting to verify a property @Verifier first chooses a variable and flip-flop set
that yields a minimal size logic cone. If it cannot verify the property, it then expands the logic cone
to include flops and other variables further upstream, and then reattempts to verify the property
with this larger logic cone. It iterates through this process until it proves the property or the
property times out. Size reduction option is off by default.

Total Properties | Run time Timeout Failed
Default 254 1 hr 14 min 71 0
+size_reduction 254 2 hr 2 min 69 0

Table 4-1: Testcase runtimes with and without +size_reduction

As seen in Table 4-1, the runtime almost doubles with the +size_reduction switch, because of the
iteration process, but @Verifier only proves 2 more out of 71 timeout properties.

0 +no_hierarchical mc:

By default @Verifier uses hierarchical model checking that starts at the lowest module level where
the property is applicable. If the property can be proven at this level, verification for the property is
complete. If the property fails, verification is performed at the next higher level of hierarchy and so
on until the property is fails, passes, or times out. Using this, @Verifier stores the level of hierarchy
at which a property is proven when the first instance of a module is encountered. Later, if the same
property at the same level of hierarchy is encountered for another instance of the same module,
@Verifier uses the stored information and makes sure that the property is already proven.

Revision 1.2

Paradigm Works Inc. Page 9 of 35

@Verifier Evaluation

Total Properties Run time Time Out | Failed
Default 247 30 min 5 3
No Hierarchical MC 247 30 min 24 3

Table 4-2: Hierarchical model checking using the DUT-Module2 testcase.

Users should be cautious using this switch because, as Table 4-2 shows, the +no_hierarchical mc
switch increases the number of timed-out properties, while having no effect on the runtime.

0 +data_path+<bitwidth>:

This switch tells @Verifier to find all signals that are wider than the specified bitwidth and hold
constant the bits above the specified bitwidth. For example, specifying +data_path+16 tells
@Verifier to hold constant bits [...:16] on every signal that is wider than 16 bits. This data path
option is off by default.

Total Properties Run time Time Out | Failed
Default 247 30 min 5 3
+data_path+15 247 56 min 1 142

Table 4-3: DUT-Module2 testcase ran with the +data_path switch

As shown in Table 4-3, using the +data_path switch caused timed-out properties to decrease, but the
number of failed properties increased exponentially from 3 to 142. Also, the runtime almost doubled.
Users should not use this switch as a blanket method for constraining signals. A constraint verilog
file is best suited for this since the +data_path+ switch gives misleading properties failures.

0 +model check+bmcand +bme_bound+<bmc bound>:

By default, @Verifier attempts to prove properties over an infinite number of clock cycles. Bounded
Model Checking (BMC) searches for failures within a specified number of clock cycles. BMC can
significantly reduce runtime, but has a profound effect on results. The +model check+bme and
+bme_boundr<bmc bound> switches must be used together (the former turns on the BMC engine
and the latter specifies the clock cycle bound).

The default behavior with BMC is to first try the bounded engine, and if the property passes, it will
then try the default engine. While this can speed things up for properties that fail in the specified
BMC boundary, it won’t help for those that don’t. To turn off this default BMC behavior and run
solely with the bounded engine without the default engine, use the switch +no_atfv:

+no_atfv+model check+bmc+bmec_boundt+20

According to @HDL’s @Verifier Runtime Application Note, the formal engine used for this proof is
only useful at the module level because it has a limit of 5000 flops or 50000 gates for each property.
If a property hits either one of the limits, it will be marked as “Timed Out”.

Revision 1.2

Paradigm Works Inc. Page 10 of 35

@Verifier Evaluation

Total Properties Run time Time Out | Failed
Default 254 1 hr 15 min 70 0
+model_check+bme 254 1 hr 18 min 71 0
+bme_bound+20
+no_atfv 254 1 hr 30 min 66 2
+model_check+bme
+bme_bound+20

Table 4-4: BMC using the DUT-Modulel testcase

As shown in Table 4-4, our testcase proved hardly any difference with bmc turned on. However, we
still expect this feature to cut runtime depending on how high the bmc_bound is set, the
characteristics of the properties being proven on the design, and the number of failing properties
when running with the default formal engine (ie. the more properties that fail with the default
formal engine, the more opportunity the bme engine has to reduce runtime).

o +mclk’

When verifying clock domain crossings, clocks are specified using the +mclk switch (eg.
+mclk+top.dut.A_Clk+top.dut.B_Clk). Clock analysis is discussed more in depth in Section 5.2
through 5.4),

In a multi-clock domain design, the fastest clock gets listed first as the reference clock, and slower
clocks are listed with an integer multiple for the speed ratio to the reference clock (eg.
+mclk+ fastClk:1+slowClka 2+ slowClkb4 could be used to specify 133 MHz (fastClk), 100 MHz
(slowClka), and 40 MHz (slowClkb) clocks).

0 +synchronizer infot+<file name> and +synchronizer rank+<number>:

Users can specify clock analysis information on the command line or by adding this same
information to a file (Refer to Sec. 4.1.3.3) and using the +synchronizer info+ switch. The
+synchronizer rank switch tells @Verifier to check that all synchronizers have at least the specified
number of flip-flops in series before the data signal is used in the target clock domain (See Section
5.2.3 for testcases and feedback).

Revision 1.2

Paradigm Works Inc. Page 11 of 35

@Verifier Evaluation

0 +no_reachability:

Run time Total Properties Time Out Failed
With Reachability 1hr15min | 254 70 0
(Default)
No Reachability 2 min 6 6 0

Table 4-5: No reachability analysis using the DUT-Modulel testcase

The +no_reachability switch tells @Verifier to not check reachability properties during AFV (Refer
to Sec. 5.10). As seen in Table 4-5, not checking reachability properties can significantly reduce
runtime, and this is very useful for getting quick feedback on a design in progress.

4.1.3 Input files of @Verifier
In addition to design files, users may input other supporting files during a run:
e Constraint file
e atadaptive.tel script

¢ Synchronizer information file

4.1.3.1 Verilog Constraint File

@Verifier can incorporate user-generated constraints that are used to avoid unwanted inputs
combinations that could cause false failures. These input combinations may correspond to states that are
impossible to reach in the real system or states that the user simply has no interest in testing.

The constraint file may be specified on the command line and uses standard Verilog syntax in addition to
three @HDL system calls. The constraint module is defined in it’s own verilog file, must be named
athdl constraint (the file name must match the module name), and has no ports. The clock signal must
be declared as a register and named clk. This is a dummy clock, which will map to the main clock in the
design. The three special @HDL system calls are $random, $legal, and $onehot. Figure 4-2 shows an
example constraint module using the $legal @HDL system call.

module athdl_constraint;
reg clk;

assign {top.a, top.b, top.c} = $legal (3’001, 3b101, 3b110);
endmodule

Figure 4-2: Constraint module example

Revision 1.2 Paradigm Works Inc. Page 12 of 35

@Verifier Evaluation

4.1.3.2

4.1.3.3

atadaptive.tcl Script

Users may enable or disable most property checks by editing a tcl file called atadaptive.tcl, which is
located in $ATHDLROOT/apache/htdocs/athdl/tclscripts by default. @Verifier automatically checks the
default location at the beginning of a run. It’s wise to use the default file for global settings, and users
can override the settings in the default atadaptive.tcl file by copying the file to the current working
directory and editing the local file. Again, @Verifier automatically checks the current working directory
for the atadaptive.tcl file, and the local file settings override the global/default file settings. For example,
users can deactivate the “index out of range” property checking that is on by default in script:

@adaptive index_out_of range off;

Synchronizer Information File

The synchronizer information file is used with the +synchronizer_info command line switch. There are
four pragmas available to customize the synchronizer checks:

1. Specify synonym clocks. CLOCK_INFO

This pragma allows users to set synonym clocks in design and no checking will be performed for
interactions between these clock domains. Synonym clocks are clocks in the design which may
appear as separate or unrecognized clocks, but should be treated as if they are the same clock.
Note that “SYNONYM” command is case-sensitive and it SHOULD be upper case of that
command. (In @Verifier Manual v.2.5.1, it is defined as lower case) and otherwise, @Verifier
does not notice this pragma.

The following shows the way how two clocks, top.derived_clk and top.master_clk are specified as
synonym in the synchronizer_info file.

--BEGIN CLOCK_INFO

/I SYNONYM <derived clock> <master clock>
SYNONYM top.derived_clk top.master_clk
--END CLOCK_INFO

Figure 4-3: CLOCK_INFO synchronizer pragma
2. Filter out checks : SYNCHRONIZER CHECK_FILTER _INFO

Synchronizer checks on any module or instance between BEGIN and END statements using
this pragma will not be performed. If the module name is specified, the filter is applied to all
instances of that module. The syntax is following.

--BEGIN SYNCHRONIZER CHECK_FILTER INFO
/I<module or instance name>

top.cpu

--END SYNCHRONIZER_CHECK_FILTER _INFO

Figure 4-4: SYNCHRONIZER_CHECK_FILTER INFO synchronizer pragma

Revision 1.2 Paradigm Works Inc. Page 13 of 35

@Verifier Evaluation

Synchroizer rank check : SYNCHRONIZER_RANK INFO

This pragma allows users to specify rank (number of levels of synchronizer, refer to Figure 4-5)
requirements per module. @Verifier verifies that the synchronizers in the design have a
specified rank. The module or instance specified with the rank number between BEGIN and the
END statement will be checked to see if the synchronizer rank matches the rank number
specified. If the module name is specified, the check is applied to all instances of that module.
The syntax is following.

--BEGIN SYNCHRONIZER RANK INFO
/I<rank number> <module or instance name>
2 top.cl.il

1 cpu

--END SYNCHRONIZER_RANK_INFO

Figure 4-5: SYNCHRONIZER_RANK INFO synchronizer pragma

At the end of a run, @Verifier displays the actual and required FF depth/rank for the
synchronizers in the design. If users dont specify any rank information, @Verifier will not
check the design’s synchronizer depths no matter how many FF levels the synchronizers use.
Even if a synchronizer has only a single register, without the SYNCHRONIZER_RANK_INFO
pragma, @Verifier will not flag a synchronizer error.

Configuration registers treated as constant : SYNCHRONIZER_CONFIG_REG_INFO

Although we did not explore this feature, users should be able to specify configuration registers
as constants to @Verifier so that the multiple clock domain checks are not performed on these
registers or the logic fed by these registers.

--BEGIN SYNCHRONIZER_CONFIG_REG_INFO
// <full hierarchical path name for var>

top.cl.cfg regl

top.cl.cfg_reg2[3:0]

--END SYNCHRONIZER_CONFIG_REG_INFO

Figure 4-6: SYNCHRONIZER_CONFIG_REG_INFO synchronizer pragma

Revision 1.2

Paradigm Works Inc. Page 14 of 35

@Verifier Evaluation

4.14 Standard Assertion Languages

@Verifier provides a property library and users can write their own custom properties and incorporate
them into a run using the +prop_file runtime mode (Refer to Sec. 4.1.1) and @Verifier supports property
languages like Open Vera Assertions (OVA), Sugar, or @HDL’s proprietary language. In here, we
evaluate only @HDL’s proprietary language.

Observation :

The user-defined properties are written in @HDL proprietary language similar to Verilog system calls
and can also be simulated with the design using the Verilog PLI (we did not explore @Verifier with
VHDL, but the tool does support it). For example:

/Il When load is active, the count is loaded from input cin in the next cycle
load -> ($next(count) == cin);

/I If load is not true, and updown is true, counter counts up

('load & updown) -> ($next(count) == count + 1);

/I If load is not true, and updown is not true, the counter counts down
('load & 'updown) -> ($next(count) == count — 1);

Figure 4-7: Example of user-defined properties file (design_name.p)

Users specifies custom properties file and using switch +prop_propt+ldesign_name.p] to apply this
assertion checking to simulation.

Additional switches for property checks
e +print afv checks (Refer to Sec. 4.1.1)
e +inline prop (Refer to Sec. 4.1.1)

Using some examples already in @Verifier Manual v. 2.5.1 for testcases, @HDL proprietary language is
fairly straightforward for users to write the properties for the design and if the user-specified properties
fail, Verifier Window shows that what line of property file causes that. Also failed message has hyper-
linked to waveform viewer. When we clicked on the message, @Verifier pops up message like “WaveForm
has not been loaded. Certain operations require waveform to be loaded”. Without waveform viewer and
limitation of information given by @Verifier, it is hard for users to figure out whether users’ assertion
checking or actual design is wrong.

@Verifier can enable or disable the property checks in the design and it is accomplished by using “// @hdl
ichecks_off/on” pragma. This pragma applies to only the file contains it. This pragma can disable specific
checking by using specific error number for AFV property checks. For example:

// @hdl ichecks_off [error number [, error number]..]
.....relevant verilog code

/l @hd] ichecks_on

Figure 4-8: Enabling and Disabling property checks using inline pragmas

Note : This pragma enables or disables the error checking for only AFV, not user-specified property
checking (assertion checking). (i.e. The custom assertion checking by users is NOT affected by this
pragma).

Revision 1.2 Paradigm Works Inc. Page 15 of 35

@Verifier Evaluation

4.1.5

4.2

4.2.1

4.2.2

Random Simulation Feature

The main purpose of the random simulation feature is to reduce run time by proving as many
reachability properties as possible without invoking the time consuming formal engine. This feature is on
by default but can be turned off with the switch +no _random_reach. To run the random simulation, the
$ATHDL,_SIM environment variable must be set to the name of the simulator to invoke (VCS, Verilog XL,
NC, and Modelsim are supported).

@Verifier will generate a testbench that runs a random simulation on the design. The testbench applies
the resets and generates clocks and random stimulus for the remaining inputs. It runs the testbench and
monitors the block of code for each of the reachability properties. If the block of code is executed during
random simulation, then it isn’t necessary to prove the reachability property.

Observation :
Reachability/Total Properties Run time Timed Out | Failed
Properties | Properties
Random Sim 52/238 32 min 5 3
No Random Sim 52/238 41 min 5 3

Table 4-6: DUT-Module2 testcase with and without random simulation

We ran the DUT-Module2 testcase with and without random simulation. We had issues getting the
random simulation to run consistently. After some investigation, we noticed that if the simulator license
(VCS in our case) is not available, @Verifier quits out of the random simulation step. A script could get
around this issue, but it would be nice if @Verifier entered into a loop to wait for the license instead of
just quitting out of and skipping the random simulation step.

We expected the random simulation to reduce the runtime. Roughly 22% of the total AFV properties
extracted from the testcase were reachability properties. With random simulation the runtime was
reduced by about 22%, as seen above in Table 4-6. Random simulation can at best reduce the runtime by
the percentage of reachability properties out of the total properties. Using the DUT-Modulel testcase,
random simulation had a minimal effect on the runtime because only 6% of the total properties were
reachability properties. Additionally, random simulation will not significantly reduce the runtime if a
high percentage of the reachability properties do not pass during the random simulation step and have to
get verified with the formal engine. In an extreme case, the runtime will not get reduced at all if all of
the reachability properties do not pass during the random simulation step.

@Verifier Output

The definition of the output of @Verifier is what @Verifier generates as a result of the run.

atverifier.log file

After the run is completed, @Verifier generates output log file, which is called “atverifier..log” in current
work directory and it lists what command line switches users used, verilog files, the phases of run, and
each property and constraint check and status as well.

afv_checks.p file

This file is generated only when command line switch +print_afv_checks in on (Refer to Sec. 4.1.1).

Revision 1.2 Paradigm Works Inc. Page 16 of 35

@Verifier Evaluation

5.1

511

AFV (Automatic Functional Verification)

The AFV feature extracts design characteristics/elements from the RTL and applies design property
checks on the design using formal techniques and/or random simulation. The design properties that are
applied during AFV are from @Verifier's canned property library. This feature present in most if not all
formal property checkers. Though, @HDL uses the term “AFV” in an attempt to distinguish this feature.
To add AFV to an @Verifier run, you only need to add the +afv switch to your atverifier command. AFV
can check a design against the following properties:

e FSM Deadlock
e Unreachable FSM States
e Terminal FSM States
e Clock synchronization errors
e Multicycle timing path errors
e False timing path errors
e Parallel and Full case synthesis directives
* Redundant latch pair errors
e One Hot coding style
¢ One Cold coding style
e Index out of range
e Memory/FIFO read or write errors
e Clock Gating
e Unintended latches
e Unreachable RTL code
e Undriven variables/signals
e Stuck at 1/0 errors
* Reset logic errors
e Combinatorial loops
Refer to the latest @ Verifier Manual for a complete listing of properties available through AFV. We highlight
and tested some of these AFV properties.

FSM (Finite State Machine) Analysis

@Verifier's AFV feature contains three properties that can uncover bugs within a state machine. For the
Deadlock and Unreachable_state properties, our test cases yield slightly different definitions of the
property than that given in the @Verifier Manual:

¢ FSM Deadlock: when two FSMs are both expecting input from the other, but this input will
never come because both FSMs are waiting for the other to generate the stimulus first.

¢ Terminal State: A state from which a transition to any other state cannot occur without
applying reset. This differs from FSM deadlock because regardless of the input
combinations given to the FSM, except for reset, a transition to any other state is not
possible.

¢ Unreachable State: A state that is unreachable from any other state

FSM Testcase Observations

Our test design did not reveal any interesting FSM property failures, so we created the Verilog testcase
shown in Appendix A: FSM Testcase Source Verilog and created a list of observations, in no particular
order:

Revision 1.2 Paradigm Works Inc. Page 17 of 35

@Verifier Evaluation

1. The @Verifier Manual gives the above definition for FSM Deadlock (ie. two FSMs waiting
for input from the other), but our testcase shows that the tool treats FSM Deadlock in a
more general sense; As a condition where the design is not capable of generating any input
combination to the FSM to allow it to transition to another state.

2. Deadlock property failures point to the exact state that can get deadlocked. To track down
the exact cause of the deadlock, you can click on the property failure message and it pulls
up the waveform for the failing case. It automatically adds signals that it thinks are
relevant to the failure, but all variables are saved so that the user can add any additional
variables to the waveform. This was extremely helpful in pinpointing the root cause of
deadlock property failures and without having to resimulate. However, we could not
consistently get the waveforms to open up. We were unable to root cause this problem.

3. The @Verifier Manual defines the Unreachable_state property as a check for unreachable
states, which seems very straight forward. However, this property actually checks for
unreachable state transitions and not unreachable states. This means that a particular
state may be reachable, but it may have certain transitions to it that are not reachable. In
this case an Unreachable_state property failure will be flagged for each FSM with
unreachable transitions, and these failures are not always easy to track down (see Figure
5-1). If there are multiple failures in a single FSM defined within an a/ways block, all of
the failures are lumped together into one failure statement. The failure statement only
gives the first line of the always block to facilitate debug, as opposed to the specific lines
inside of the al/ways block that the failures occur on. It’s easy to see that for complicated
FSMs it can be quite hard or time-consuming to even figure out exactly where the failures
occur within the FSM, even if there’s only one failure.

Verifier Window

| 4+ ¥ ‘Tutal Errors: 10 Methodology Guide |

Reset Mocule il Category 7| Sub-Category f Search I

Evrors

Category Ervor Type Lie Message Ervor Hum
FSM Mealy Moore 27 Synchronous-mealy FSM style is not allowed in your design methocology 45
FaM Mealy Moore B0 Synchionous-mealy FSM style is not allowed in your design methodolocgy 45
F&M State B0 Synchronous-mealy FSM has 4 un-reachable transitions 45
Logic Case Statements 38 Case statement does not have default statement a7
Logic Case Statements B7 Case statement does not have default statement a7
AR unreachable_states B0 Synchrohous-mealy FSM has 4 un-reachable transitions 43
AFY deadlock a7 FAILED - FEM deadlock for state IDLE FSM1 property Tor instance deadiock (module deadiock) 195
AP deadlock B3 FAILED - F3M deadlock for state IDLE FSM2 property for instance deadiock {module deadlock) 195
AR FReachability a1 FAILED - code reachability property for instance deadiock (module deadlock) 20
AR FReachability 94 FAILED - code reachability property for instance deadiock {module deadlock) 201

Figure 5-1: Verifier Window invoked by the +gui command line option

4. We noticed that AFV and DRC give redundant errors for unreachable state transitions and
terminal states. On a large design with many errors, this could make the already
overwhelming list of errors that much more intimidating. Though in some cases code
reachability property failures helped track down those nondescriptive unreachable state
transition failures.

Revision 1.2 Paradigm Works Inc. Page 18 of 35

@Verifier Evaluation

5.2 Multiple Clock Domain Analysis

@Verifier identifies clock derivation tree (like buffered, inverted, gated divide-down clocks), clock domain
synchronizers, domain crossover, and data stability. Also users can view domain in schematic viewer.

@Verifier is supposed to identify :
The clock tree and partition the design into various clock domains
Clock derivation tree (like buffered, inverted, gated, divide-down clocks)

All signals that cross clock domains

o o o o

Valid synchronizer elements among these signals. It recognizers 4 synchronization styles.
These include synchronization based on FFs, domain enabled multiplexor logic, FSM’s and
FIFO’s.

0 All signals that cross clock domains without proper synchronization.

5.2.1 Multi-clock domain synchronization verification

@Verifier can identify four kinds of synchronizer schemes inferred from the RTL code and check to
determine if they conform to synchronization rules. This check also identifies any signals that cross over
from one clock domain to another without proper synchronization.

Synchronizer @Verifier supports the following :

A. Synchronizer with a series of FFs

REG . . REG
. . >
—» >
REG | 4’ REG
Synchronizing flops with ‘N’ .
. levels (Rank) -
» . . L
E Logic Allowed. E
Domain 1 E E Domain 2

Figure 5-2: Synchronizer with logic after the source register

The assertions generated by @Verifier checks whether the specified number of FFs (rank) is used in
the synchronizer defined in synchronizer info file using SYNCHRONIZER_RANK_INFO pragma.

In “atadaptive.tcl” script, the number of FFs required in a path that crosses clock domains is defined
and default is 1. Users may customize this check to change the number of rank. For example:

Revision 1.2 Paradigm Works Inc. Page 19 of 35

@Verifier Evaluation

@adaptive synchronizer 2;

Rank information in synchronizer info file sets the default; the one in synchronizer info file overrides
the default and even new modified rank info in local “atadaptive.tcl” script. (Refer to Sec. 4.1.3.3)

B. Synchronizer with a series of FFs that are not allowed to use any combinational logic between the
registers in the final stage of domain and the synchronizers.

REG . . REG
. . >
—p> g
REG <’ REG
Synchronizing flops with ‘N -
P levels. .
» . . Lt
* Logic NOT Allowed.
Domain 1 E E Domain 2

Figure 5-3: Synchronizer without logic after the source register

This scheme B is same as scheme A except no combinatorial logic before synchronizer and the
assertions checks same thing as scheme A.

C. Synchronizer with mux enable.

Revision 1.2 Paradigm Works Inc. Page 20 of 35

@Verifier Evaluation

REG

REG

Domain 1

REG

Domain 2 Synchronizing with Mux
Enables

Domain 4

REG

Domain 3

Figure 5-4: Synchronization with source clock domains muxing

This requires a hand-shaking scheme. The data generating domains 1,2, or 3 send a signal to the
signal to the data-receiving domain 4, informing it that the data is ready. The data receiving domain
4, will control the mux whenever it is ready to accept the data. @Verifier identifies a mux to be part
of the synchronizer and will not flag it as an asynchronous multi-domain crossover (Refer to 6.2.4) or
combinatorial input to synchronizer.

Also @Verifier generates the properties that the data signals are stable while they are enabled by the
mux and verifies it.

Using a custom testcase, we could notice that @Verifier identifies this scheme and verifies data
stability property for input data in mux well. If the design violates this rule, @Verifier flags it as a
Domain Data Stability Error, and the error message is hyperlinked to the waveform.

D. Synchronizer with FIFO’s.

Revision 1.2 Paradigm Works Inc. Page 21 of 35

@Verifier Evaluation

’—PW rite ADDR

REG . . REG
— —> . —
REG [REG
> - -
. Read ADDR
Domain 1 E E Domain 2
. Synchronizing with .
. FIFO’s .

Figure 5-5: Rate change FIFO synchronization

The data is written from the data generating part of the logic, triggered by Domain 1 clock while the
data is read from the FIFO by the receiving logic using Domain 2 clock. The FIFO is used as a buffer
and the size is determined by the ratio of the clock frequency given by users and the bandwidth of the
data to be transmitted. The assertion generated by @Verifier makes sure that the read pointer
(driven by destination clock domain) does not coincide with the write pointer (driven by the
destination clock domain). If they did, it would lead to the destination domain reading the data that
the source domain was writing, which would break the synchronization scheme. (Refer to Sec.
5.2.2.3). We don’t exercise this scheme in this documentation.

5.2.2 Synchronization Model Checking

@Verifier extracts the following properties from RTL and verifies the corresponding properties. If this
condition is NOT met, @Verifier flags failure. This checks the following.

5.2.2.1 Data Stability across clock domain

When data crosses from a fast clock domain into a slow clock domain, this check verifies if data is held for
until the rising edge on the slower clock using users’ clock domain information based on ratios that
specified in +mclk switch.

Revision 1.2 Paradigm Works Inc. Page 22 of 35

@Verifier Evaluation

REG Combinatorial Synchronizer
—Pp Logic Block —»
—»
Fast_Clk <

Slow_Clk

Using a testcase that contained 2 different clock domains (using switch +meclk with ratio of master clocks)
and simple combinatorial logic is used to examine this property.

Domain Data Stability failures only give the beginning of a/ways statement as the line that the errors
occurs on instead of the specific line inside of the a/ways block that the error occurs. The error message is
like “FAILED — Clock domain data stability property for instance <instance name>" and it is hyper-
linked with waveform viewer not evaluated because of the limitation of random simulation.

If there are multiple FSM property failures in a single FSM defined within an always block, each of the
failures will give the beginning of the a/ways statement as the line that the errors occurs on instead of
the-specific line inside of the a/ways block that the error occurs (this can also be quite a nuisance even if
there is only one failure in a complicated state machine).

5.2.2.2 Stability of signals on the Bus

This property identifies whether all the data on a bus are stable while the bus is enabled being latched.
This property is NOT verified in here.

5.2.2.3 Overlap between read and write pointer in FIFOs

This property identifies whether the read occurs while the write is in progress. This property is NOT
verified in here since our DUT does not have FIFOs.

5.2.3 Invoking @Verifier clock analysis

@Verifier is invoked with the master clock option on the command line and appropriate options turned on
in the “atadaptive.tcl” file (default file located in $ATHDLROOT/apache/htdocs/athdl/tclscripts) to do the
clock anaylsis. For example:

atverifier —f <filelist>+mclk+<master clk 1>+ <master clk2>

The clock analysis can be opened when users click on @Designer GUT's “Clock Analysis” button. Clock
analysis window contains 6 categories that users can click on for corresponding information:

0 Clock tree

It shows all master clocks and line numbers that it is specified in design for each one. Line
numbers are hyper-linked to source code.

0 Synchronizers

Revision 1.2 Paradigm Works Inc. Page 23 of 35

@Verifier Evaluation

Users can view the synchronizers in design and hyper-linked line number in here
highlighted portion of source code to represent synchronizers that is nice for users to debug.
It reports the status synchronizers used in design. Also it has a capability to save
synchronizers result as text file when users clock on hyper-linked “Save As Text” in upper
right corner.

The Synchronizers category shows whether the synchronizer depths are sufficient
according to the rank specified with the +synchronizer_rank command line switch. We
created three testcases that explore synchronizer checks:

0 Testcasel

This testcase uses the SYNCHRONIZER_RANK_INFO pragma within a synchronizer
information file to specify the rank information. The testcase specifies a rank of 4 and
the synchronizer in the RTL use a rank of 2. @Verifier shows that the status of the
synchronizer is GOOD in this testcase, even though the synchronizer depth
implemented is less than the rank specified via the pragma.

0 Testcase2

This testcase uses the +synchronizer rank switch to specify the required rank. Unlike
the SYNCHRONIZER_RANK_INFO pragma, @Verifier correctly caught insufficient
synchronizer depth errors with the +synchronizer rank switch. However, when we
added the +dir switch to specify a directory path for incremental results, the
synchronizer rank checks were ALWAYS GOOD no matter what rank value we
specified with the +synchronizer_rank switch.

0 Testcase3

This testcase uses both the SYNCHRONIZER_RANK_INFO pragma within a synchronizer
info file and the +synchronizer rank switch to specify the rank. We did this to see if one
method had priority over the other if both are used. We found that the +synchronizer rank
switch was dominant. We still saw the same anomaly with the +dir switch as with
Testcase2.

Incorrect Synchronizers

@Verifier identifies whether there is any combinational logic at the input of any
synchronizer. By default this check is on; however users can turn this check off by using
+allow_comb_drivers command line switch.

Insufficient Synchronization

Any synchronizers that does not have specified number of FF are listed in this category. For
example, when users specify a rank of 2, @Verifier verifies that the signals go through at
least 2 flops in a row before being used. If they dont, it flags it as “insufficient
synchronization”.

Asynchronous crossover

Revision 1.2

Paradigm Works Inc. Page 24 of 35

@Verifier Evaluation

Domain 1

Domain 2

REG
Asynchronous

Output

>

REG

@Verifier checks whether combinatorial logic in design has inputs directly from multiple
clock domains and list them in this category.

This property is examined by using DUT’s module that contains ~80k gates and 3 clock
domains (40MHz, and 2 different clock phase 25MHz). @Verifier detects Asynchronous
Cross failures when combinatorial logic in module has inputs from multiple master clock
domains without synchronization. Whole lines related to the corresponding logic are
highlighted in the source code by clicking line number in this category. Messages are detail
enough for users to debug failure and like Synchronizers category, it also contains the
capability to save result to files.

Unrecognized Clocks

Unrecognized clock category includes the following cases: clocks that cannot be derived by
@Verifier and clocks that are found without any relationship with any of the specified
master clocks.

Users may fix this by either specifying these as master clocks or define relationships to an
existing master clock using the synchronizer info file. (Refer to Sec.4.1.3.3).

Using a testcase that contains a dummy clock does not have any relations with master
clocks, @Verifier lists this clock in this category. A hyper-linked line number highlights line
of unrecognized clock definition instead of lines of unrecognized clock used.

5.3 Multi-Cycle Path (MCP) logic

For this check, users need to provide the MCP file containing the list of multi cycle path using
“atadaptive.tcl” script. @Verifier reads the file and generates several formal properties to make sure
whether the output of the source FF is not read by the input of the destination FF, until the number of
cycles specified is reached. If MCP file is NOT given by users, even if users turn on this check in
“atadaptive.tcl” script, @Verifier flags an error for this.

Since this check is off by the default in “atadaptive.tcl” script, users may modify this script to turn on and
provide the MCP file. Users need to give the information in MCP file. For example:

@adaptive multi_cycle_path “MCP file name” on; (in the atadaptive.tcl script)

Revision 1.2

Paradigm Works Inc. Page 25 of 35

@Verifier Evaluation

5.4

number_of_cycle signal_1 signal_2 : (in MCP file)

In this case, we use the same testcase as Figure 5-6. A testcase set the MCP path from Mult_Out to Out
and Read_Mult takes 2 clock cycles to be enable the mux. Using this information, the syntax of MCP file
will be like “2 Mult_Out Out’. @Verifier identifies MCP path as failure whenever MCP path is longer
than it is supposed to be. Line of errors is hyper-linked to source code. The error message is hyper-linked
to waveform viewer and waveform viewer shows inputs of design and some inputs are redundant. Since
the signal name is hierarchical, it is a nuisance to display signal name itself if there are multiple
hierarchy.

Start_Mult

A h 4
— Multiplier Mult_Out

Read_Mult

Figure 5-6: MCP example from @Verifier Training v.2.5

False timing path logic

Users need to provide @Verifier the file containing false timing path for this check like MCP and
@Verifier read that file and generate corresponding properties to make sure whether false paths given by
users will never be active in the design. (i.e. users identify the false timing path and when @Verifier sees
only the false timing paths given by users active, it flags as False Path Error.). False timing path
assertions can work at RTL or Gate level, but the normal restrictions on the constructs @Verifier support
at gate level still apply. (i.e. UDPs, transistor logic, tristate, etc. are NOT supported).

Since this check is off by the default in “atadaptive.tcl” script, users may modify this script to turn on and
provide the FTP (False Timing Path) file. Also users need to provide the information for false timing path
in the design. For example:

@adaptive false_paths “false timing path file name” on; (in “atadaptive.tcl script)
signal_1 signal_2 (in false timing path file)

Revision 1.2 Paradigm Works Inc. Page 26 of 35

2N

@Verifier Evaluation

enable_b
enable
Clock
ignal_1
\ Signal_3
N 1 \ -
0
L~ Mux1
Signal_2

Figure 5-7: False timing path example.

In Figure 57, the false path from “Signal_1” to “Signal_3” (red line) is specified in a falsepath file using
the atadaptive.tcl script. @Verifier uses the false path information from the falsepath file and verifies
that the path from “Signall” to “Signal_3” is active, in this testcase. When the “enable” signal hi, which
makes the path “Signal_1” to “Signal_3" active, @Verifier flags a false path error. The error message is
hyperlinked to the line in RTL source code. In this case, clicking the error message takes you right to the
line in the source code that defines the register that outputs Signal_3. The false path error message is
also hyperlinked to the waveform viewer, which brings up the appropriate waveforms that proves that
the path in question is not a false path (the clock, enable_b, and enable signals for this example).

5.5 Parallel and full case statements

These checks verify that case statements specified as “parallel case” using synopsys directive (e.
llsynopsys parallel case) during the synthesis truly have mutually exclusive conditions and case
statements specified as “full case” using synopsys directive (ie. /synopsys full case) during synthesis don’t
have unnecessary latches because of missing cases. Users need to specify these cases in RTL code in
order to have these checks. The checks are on by default, and can be turned off using local
“atadaptive.tcl” script. For example:

@adaptive parallel_case off;
@adaptive full_case off;
e Parallel case statement
e Full case statement observation

@Verifier detects full case in Verilog regardless of synopsys full_case directive when full_case check
is on in atadaptive.tcl script. If the logic is not literally full case (i.e. there is a missing case) and

Revision 1.2 Paradigm Works Inc. Page 27 of 35

@Verifier Evaluation

5.6

specified as full case, @Verifier verifies whether a missing case is used in design. If so, @Verifier
flags it as Fullcase error. Like the Domain Data Stability Error, this error message is also
hyperlinked to the waveform viewer. For example:

Case (full_case) //synopsys full_case
2’b00 : fc = 2’b01;
2’b01 : fc = 2’b10;
2’b10 : fc = 2’b00;
default : fc = 2’b00;
endcase

Figure 5-8: Full case example

In Figure 5-8, the case (full_case = 2b11) is missing and when the same case is used in the design,
@Verifier detects it and flags it as Fullcase error.

Redundant latch pairs & unintended latch

@Verifier identifies the latches in RTL code and verifies the conditions for redundant latch pairs and
unintended latch.

Data

R Latchl Comb. Latch2

Clk1 Clk2

Figure 5-9: Redundant latch example

In Figure 5-9, when Clk1 and Clk2 are overlapping or same, this condition makes both Latchl and
Lactch2 are transparent at same time and Data bypass Latch 1 and Latch2 at once. Only when Clk1 and
Clk2 are non-overlapping, Latch1 and Latch2 are latching data independently at each clock phase acting
like register. @Verifier checks that latches extracted from designs have this condition and if they do,
@Verifier flags as “Redundant Latches”.

Moreover, default case or missing case statements exists in either case statement or if/else statement in
RTL code, synthesis engine generates unintended latches instead of mux. @Verifier makes sure that
unintended latches are generated by such a condition and if so, @Verifier will flag as “Unintended
Latches”. We did not explore it, but users can avoid false errors by using constraints.

Revision 1.2 Paradigm Works Inc. Page 28 of 35

@Verifier Evaluation

5.7

5.8

5.9

5.10

One hot drivers

This checks that the drivers for a tristate bus are one-hot, i.e. users doesn’t get multiple drivers on a bus
at one time. The check is on by default, and can be turned off using local “atadaptive.tcl” script. For
example:

@adaptive one_hot_drivers off;

This section in the manual is NOT explained at all in the current version (v2.5.1), but it will be in manual
v.3.0.

Index out of range

@Verifier checks that indexes specified for memories and buses are within specified range. For example,
in the case of the vector “reg[31:0] a”, @Verifier will flag if the variable ali] with i<0 & i>31 is read or
written. Also, in the case of memory, “reg[31:0] mem[1000:2000]”, @Verifier will flag if the expression,
mem/j] with j<1000 & j>2000 is accessed for read or write in the design.

Using a testcase that is a module (~83k gates) of our DUT for this check, @Verifier catches index out of
range failure that is following.

Input A is 64-bit data and input B is 9-bit data. A[B] is used as a mux in a testcase and index B is out of
range (supposed to be 6-bit) in this case and @Verifier flags.

FIFO Verification

There are two areas that @Verifier identifies for FIFOs. The first is clock domain analysis already
covered in Sec. 5.2; it is one of the synchronizer types @Verifier recognizes.

The second area is following:
0 Multiple writes before read in the FIFO
The location in the FIFO has multiple data written to it before any read is performed.
0 Read before write

Read of a location is taking place before the data is written (i.e. the data read is old, stale
data)

0 Memory address out of range
The address decoded by the device is not in the range of the memory specified.
0 Memory address unknown during write

During a write operation if the address has unknown contents (indicated by X's), @Verifier
detects logic that generates an unknown address and notifies the user. Either the logic
needs to be corrected or the unknown contents needs to be filtered out.

For the second area, @Verifier runs these properties, not with formal verification, but with random
simulation. FIFOs implemented with Memory, which are non-synthesizable (or behavioral) logic can’t be
done in formal verification since one of the steps under the hood of @Verifier is a synthesis. @Verifier only
runs these properties with random simulation and for random simulation, any sort of FIFOs is working
with @Verifier. We did not explore this feature.

Reachability

AFV can check that all code is reachable based on some input combination, which may or may not be
legal in the real system (constraints can be applied here). However, there is an issue with reachability

Revision 1.2 Paradigm Works Inc. Page 29 of 35

@Verifier Evaluation

property analysis. While reachability property analysis finds design bugs, they are very time consuming
to check and often the number of reachability assertions can be large. Even a small design can yield over
10000 reachability properties. Meaning that running this with the default timeout of 45 seconds on one
CPU could take a day+. In the case of our DUT (~250K gates), the runtime takes an estimated 4.5 days
(Note: this is an estimate because we killed the job after it ran for 2+ days). There are several ways of
reducing this runtime issue with reachability analysis:

0 Use the command line switch +no_reachability to run without checking reachability
properties

0 Adjust the timeout setting (default timeout limit is 45 seconds).
0 Random Simulation (Refer to Sec. 4.1.5).

o0 Distributed Processing

0 Bounded Model Checking (Refer to Sec. 4.1.2)

6 Result Viewing and Debugging with @Designer

@Designer is @HDL’s graphical verification debug cockpit, which has a similar feature set to Debussy (e.
FSM diagramming, waveform viewer, source code window, and several buttons to interrogate and move
around the design).

After the @Verifier run is finished, users can view the results and debug failing properties with
@Designer by viewing the “atverifier.log” file or invoking the @Designer GUI with the +gui switch in the
@Verifier run command. The GUI consists of the @Designer window and a Verifier Window ,which shows
failures and errors, if any. If there are no failures or errors, then Verifier Window gives the message
“Empty reply from server”.

As part of the @Designer debugging environment; users can also examine the waveform for failed
properties to determine whether the condition can actually occur. Then, the designer can either correct
the design or place constraints on the input condition to avoid “false” property failure.

The +mc_status switch invokes the Property Monitor window while the @Verifier run is executing.
Among other things, this window shows how long a job has been running and gives an estimate of how
much longer the job will take to complete. It is very useful for watching the status of long runs.

The Verifier Window shows all failures and errors by module and by category, or by both module and
category DRC, Simulation and Formal. It provides a convenient debug interface for DRC errors and
property failures by hyperlinking the failure/error’s line number to the line in the source code that
actually caused the error Moreover, it has a nice feature that allows users to search for failures or errors
by Module, Category, and Sub-category (General, FSM, Flops, Logic,Synthesis,AFV, etc).

However, there are the following issues:

0 During simulation, there is no GUI that could control the simulation process like stop,
interrupt, save, resume, and so on. Currently, @Verifier is running in batch mode and all
GUI windows (@Designer, Verifier Window, Property Manager) are invoked at end of
simulation even if the +gui switch is assigned.

0 Some messages are NOT informative enough for debug and also give the false line number.

Revision 1.2 Paradigm Works Inc. Page 30 of 35

@Verifier Evaluation

7 Conclusion

Our first attempt to run a full-chip simulation on our test design resulted in long runtimes, at day+
without any special switches or tricks. @HDL does a good job of reducing runtime by using random
simulation, ignoring reachability properties, bounded model checking, incremental runs, and distributed
processing. @Verifier didn't show any design size capacity issues. Again, our test chip was about 250k
gates. A larger design would obviously push the tool’s limits for design size capacity.

@Designer appears to seamlessly interact with @Verifier for tracking down bugs, whether by viewing the
FSM diagram, waveforms, or highlighting the offending lines within the source code. However, we found
that the error messages reported by @Verifier can sometimes be inadequate feedback for the individual
doing the debug. We also ran into issues with the error message being hyperlinked to the waveform
viewer and couldn’t always get @Designer to properly open the waveform view. For most of our feedback,
@HDL 1is either working a fix into a future rev of the tool or investigating the issue. Here’s a list of
caveats and gotchas:

0 @Verifier can have trouble finding module definitions depending on the order the modules are
defined. For example: 4 levels of hierarchy (a, b, ¢, and d from root to leaf) exist in a design;
the top-module (a) is defined in one file (a.v) and the rest (b, ¢, and d) in a separate file (b.v);
modules b, ¢, and d are defined within b.v in the order b, d, then c¢; the path for b.v is given
with the —y command line option; a.v is given as the top-level Verilog file. Under these
conditions, @Verifier will error out because it will not be able to find the definition for module
“d”. A workaround to this problem is to define the modules in the same order as they appear
in the hierarchy, from root to leaf.

0o Full chip runtimes can be extremely long (on the order of several days). @HDL now has a
Runtime App Note which discusses several techniques to shorten runtime: turn off
reachability analysis; invoking random reachability analysis simulations before invoking the
formal engine; BMC (Bounded Model Checking); BMC with the +no_atfv flag; distributed
processing using LSF or other utilities; and incremental model checking.

0 The tool doesn’t handle multiply embedded ternary (Y = Sel ? A:B) statements very well. For
example: If an assign statement has 6 ternary statements embedded, @Verifier may flag
reachability property failures but will not be able to distinguish between which part of the
statement is not reachable and which part of the statement is redundant. When @Verifier sees
redundancy in assign statement containing multiple ternary statements, it confused with
between statement that is redundant and statement that is not reachable. Admittedly, this
coding style can simply be uninviting to read, but it’s valid Verilog and our test design used
this in many places. We recoded these statements as if, else if, and else statements.

0 @Verifier currently does not offer wildcard blackboxing of modules (eg. ram*, *ip_module*,
etc.). They are investigating working this into a future rev.

0 Using the +synchronizer _rank switch in conjunction with the +dir switch causes @Verifier to
always pass synchronizer rank checks even if the implemented rank is less than the specified
rank (Refer to Section 5.2.3).

Revision 1.2 Paradigm Works Inc. Page 31 of 35

@Verifier Evaluation

The following is the list of items that could use further investigation to enhance this document:

0 Simulation with PLI — This is NOT well documented and @HDL plans to address this in the
next manual rev (v3.0).

0 OVA assertions

0 Distributed processing — This uses LSF or other distributed processing applications to run jobs
on multiple machines and merge the results when the distributed jobs are completed. When
LSF license is available, it needs to be investigated.

This evaluation was carried out using software from @HDL with their release from December 2002,
@Verifier version 2.8, and has therefore undergone several iterations since the original evaluation. At
the time of our evaluation the tool was undergoing a constant series of improvements. We also evaluated
only a subset of its features, leaving out things like OVA assertions and distributed processing. Despite
some of the issues raised herein, we feel that @Verifier warrants further investigation by DV teams
embarking on new or existing verification efforts. It has some powerful features and has the potential to
significantly accelerate and increase the efficiency of DV efforts.

Revision 1.2 Paradigm Works Inc. Page 32 of 35

@Verifier Evaluation

8 Appendix A: FSM Testcase Source Verilog

module deadlock (rst n,

clk);

input rst_n;

input clk;

reg [1:0] fsm1;
reg [1:0] fsm2;

reg advnc_fsml;

reg fsm2 rst;

parameter [1:0] IDLE FSM1 =2'd0;

parameter [1:0] STATE1_FSM1 =2'd1;
parameter [1:0] STATE2_FSM1 = 2'd2;
parameter [1:0] STATE3_FSM1 = 2'd3;

parameter [1:0] IDLE_FSM2 =2'd0;

parameter [1:0] STATE1_FSM2 = 2'd1;
parameter [1:0] STATE2_FSM2 = 2'd2;
parameter [1:0] STATE3_FSM2 = 2'd3;

I FSM1
always @(posedge clk or negedge rst_n)
if (~rst_n)
begin
fsm1[1:0] <= 2'd0;
fsm2_rst <=100;
end

else

Revision 1.2 Paradigm Works Inc. Page 33 of 35

@Verifier Evaluation

begin
/ fsm2 rst <= 1'b0;
case (fsm1)
IDLE_FSM1 :
if (advnc_fsm1)
fsm1[1:0] <= STATE1_FSM1;

STATE1_FSM1:
if (advnc_fsm1)
begin
fsm1[1:0] <= STATE2_FSM1;
fsm2_rst <=1'b1;

end

STATE2 FSM1:
if (advne_fsm1)
fsm1[1:0] <= STATE3 _FSM1;

STATE3_FSM1 :
if (advnc_fsm1)
fsm1[1:0] <= IDLE_FSM1;
endcase / case(fsm1)

end // else: lif(~rst_n)

/I FSM2
always @(posedge clk or negedge rst_n)
if (~rst_n)
begin
fsm2[1:0] <=2d0;
advne_fsm1 <= 1'b0;
end
else
case (fsm2)

IDLE FSM2 :

Revision 1.2 Paradigm Works Inc.

Page 34 of 35

@\Verifier Evaluation

begin
advne_fsm1 <= 1'b0;
if (~(fsm2_rst)
begin
fsm2[1:0] <= STATE1_FSM2;
advne_fsm1 <=1b1;
end

end

STATE1_FSM2 :
begin
if (fsm2_rst)
fsm2[1:0] <= IDLE_FSM2;

else
begin
fsm2[1:0] <= STATE2_FSM2;
advne_fsm1 <=1b1;
end
end

STATE2 FSM2 :
if (fsm2_rst)
fsm2[1:0] <= IDLE_FSM2;
else

fsm2[1:0] <= STATE2 _FSM2;

STATE3_FSM2 : fsm2[1:0] <= IDLE_FSM2;

endcase // case(fsm2)

endmodule // deadlock

Revision 1.2 Paradigm Works Inc.

Page 35 of 35

	Introduction
	References
	Test Case & Conditions
	@Verifier Inputs
	Command line switches
	Runtime Mode Switches
	@Verifier Option Switches
	Input files of @Verifier
	Verilog Constraint File
	atadaptive.tcl Script
	Synchronizer Information File

	Standard Assertion Languages
	Random Simulation Feature

	@Verifier Output
	atverifier.log file
	afv_checks.p file

	AFV (Automatic Functional Verification)
	FSM (Finite State Machine) Analysis
	FSM Testcase Observations

	Multiple Clock Domain Analysis
	Multi-clock domain synchronization verification
	Synchronization Model Checking
	Data Stability across clock domain
	Stability of signals on the Bus
	Overlap between read and write pointer in FIFOs

	Invoking @Verifier clock analysis

	Multi-Cycle Path (MCP) logic
	False timing path logic
	Parallel and full case statements
	Redundant latch pairs & unintended latch
	One hot drivers
	Index out of range
	FIFO Verification
	Reachability

	Result Viewing and Debugging with @Designer
	Conclusion
	Appendix A: FSM Testcase Source Verilog

