
The Way Forward for Electronic Design

“As founder of an organization that is transforming the economics and technology of an

industry so that we can improve opportunity for millions, I am constantly watching what

others are doing. Cadence has a vision and model with the potential to transform the

economics and performance of the microprocessor industry and, by extension, devices

every consumer takes for granted. This document outlines a vision that bears watching.”

	 – Nicholas Negroponte, Founder and Chairman, One Laptop per Child

“The changing basis of competition in some mainstream semiconductor markets will
punish firms that do not adapt to the new environment. EDA360 lays out a high-level
framework, leveraging modularity and architectural innovation, for profitable adaptation
to this new wave of disruptive change.” 		

	 – Steven King, Founder, Innovo Strategies

“Today’s 1.5B connected consumers will balloon to 6B or more by 2015—but those
consumers will join the global network in emerging markets, where factors like income,
literacy, and access to electrical power require a new set of breakthroughs in the
electronics industry. The EDA360 document issues a call to action for the semiconductor
industry to deliver these breakthroughs.”

 	– Yankee Group’s Emily Green, author of “Anywhere: How Global Connectivity is

	 Revolutionizing the Way We Do Business”

“Being able to design complete systems from the ground up and deliver a total platform
for system integration, applications development, and system validation represents the
future of EDA. The EDA360 vision has the potential to allow semiconductor companies
to create powerful products that would enable consumer technology providers to deliver
a device platform with an ecosystem of hardware, software, and services. That in itself
could help tech companies be more competitive and profitable.”

	 – Tim Bajarin, President, Creative Strategies, Inc.

EDA360: The Way Forward for Electronic Design

Chapter 1: EDA Industry Focus Shifts to Integration and Profitability	 1

Chapter 2: Application-Driven System Realization	 8

Chapter 3: Software-Aware SoC Realization	 16

Chapter 4: EDA360 Enables Silicon Realization	 22

Cade n c e V ISION - eda 3 6 0 - T h e Way F o r wa r d f o r E l e c t r o n i c D e s i g n

1

C
a

d
e

n
c

e
 V

IS
IO

N

Introduction – A Revolution Interrupted?

From mobile phones to infotainment devices in cars, from digital cameras to heart
monitors, from e-readers to network-aware televisions, our world is shaped by increasingly
sophisticated and interlinked electronic devices. A world without devices that were
inconceivable just 10 or 20 years ago would be intolerable today. The systems and
semiconductor companies that shaped this electronics revolution have not only increased
functionality exponentially, but have also slashed costs to the point where a few dollars
today purchases more computing power than millions of dollars 30 years ago.

While we all recognize names such as IBM, Intel, Samsung, Apple, and Sony as leaders of
this electronics revolution, it’s important to remember that this era of innovation has been
empowered by electronic design automation (EDA). The commercial EDA industry provides
the software, services, and intellectual property (IP) that make advanced semiconductor
and system design possible. Several decades ago, EDA software was internally developed
and was used only by a few large companies. Over the past 30 years, the commercial
EDA industry has brought advanced integrated circuit (IC) design capabilities to companies
of all sizes, including startups that have developed some of the most creative products in
the market.

Today, systems and semiconductor companies are undergoing a disruptive transformation
so profound that even the best-known companies will be impacted. The EDA industry
now stands at a crossroads where it also must change in order to continue as a successful,
independent business. Without that change, EDA will become a fragmented industry
offering suboptimal, poorly targeted solutions that fail to solve customer problems. As a
result, the huge leap forward provided by the electronics revolution will come to a standstill.
The result? A squandered opportunity for technology innovation, and a diminished
contribution by the electronics industry to re-build the global economy.

The disruptive transformation we are speaking of is not about EDA developing new design
tools. It is not about new methodologies. It is not about the functional verification crisis, or
the move to electronic system level (ESL) design, or any of the issues that have dominated
discussions about EDA to date. It is about something much larger. It begins with a shift from
design creation to integration in the electronic systems industry, and results in a new focus
on profitability. This realization, in turn, opens the way to EDA360, a new vision for what
the EDA industry can become.

To tell the story, however, we must take a step back for a moment to where everything
starts—the electronics consumer.

Chapter 1:
EDA Industry Focus Shifts to Integration
and Profitability

C
HAPTER

 O

NE

EDA

 In

d
u

s
t

r
y

 F
oc

u

s
 S

h
if

t
s

 t
o

 In
t

e
g

r
a

t
io

n
 a

n
d

 P
r

ofi

t
a

bi
l

it
y

2

The “New” Consumer Electronics Market

EDA providers have long delivered value to computer-aided design (CAD) departments and
engineering teams, but have often failed to successfully articulate a value proposition to
corporate leaders. To do so, EDA providers must fully understand the market imperatives
that electronics companies are facing, and help those companies deliver value to their
customers. End consumer demands help shape EDA technology development. For example,
the demand for low-power devices and long battery lives has led to a growing suite of
low-power IC design tools.

So what do electronics consumers want? Their appetites are voracious and growing. As of
now, the most prevalent demands include:

•	 Multiple, concurrent software applications. Consumers want to make phone
calls, watch movies, find directions, text friends, and surf the Web—all on the same
mobile device.

•	 Complete mobility. Consumers want to connect to the Internet anywhere, anytime.
They want lightweight, portable devices with long battery lives. And they want their
experiences with these handheld devices to be seamless, requiring a high level of
integration among device, software, and network.

•	 Audio, video, 3D graphics. Text and voice only are no longer sufficient. We live in a
visually-oriented world where high-resolution video and graphics are becoming an
essential part of any electronics product.

And of course, consumerization coupled with today’s economy drives further cost pressure.
That is especially true given the large number of potential consumers and producers in
China and India.

Established companies in the systems design space have largely responded to these
challenges by making the same kinds of incremental improvements they’ve made all along.
They have continued to call upon their semiconductor partners for faster, better, lower-
power ICs, but most have not changed their fundamental business models. And today,
established electronics companies are being challenged by game-changing new entrants.

Many of the newcomers are redefining their industries around applications, or “apps.”
For example, in the mobile handset market, established companies such as Nokia,
Samsung, and Motorola are competing with newcomers including Google (Android),
Apple (iPhone), HTC, and RIM. In the mobile infrastructure market, companies such as
Alcatel/Lucent, Nortel, and Ericsson are facing new entrants including Huawei and ZTE.
And in the PC market, Asus and Acer are challenging well-known players such as Dell
and Hewlett-Packard.

Applications take different forms in different industries. “Apps” in mobile handsets could
include audio, video, gaming, and the myriad of applications available in the iTunes Store.

Today, systems and semiconductor companies are undergoing a disruptive transformation
so profound that even the best-known companies will be impacted. The EDA industry now
stands at a crossroads where it also must change in order to continue as a successful,
independent business.

3

C
a

d
e

n
c

e
 V

IS
IO

N

“Apps” in mobile infrastructure could include routing, deep packet inspection, and
encryption/decryption. And this “apps” trend extends to virtually every vertical industry.
The significant point is that most of the newcomers are focusing their innovation and
differentiation on “apps.”

Many of the newcomers are outsourcing hardware design. In addition, they are increasingly
dependent on semiconductor providers to supply portions of the software stack, such as
diagnostics, drivers, operating system (OS), and middleware. What they are demanding, in
effect, are application-ready platforms with hardware and software for a given application,
such as mobile computing. The completeness and relevance of an application-ready plat-
form has become as important as having the latest, greatest, most power-efficient silicon.
The newcomers differentiate their products by building unique software applications on
top of those platforms.

There are several approaches to building application-ready platforms. In a traditional,
disaggregated development approach, hardware is developed first, and the OS and
applications are added later. In a hardware-defined approach such as the Apple iPhone,
the hardware and OS are fully integrated, but applications must still conform to the
hardware. In a hardware-independent, application-driven development model—exemplified
by the open-source Google Android OS—hardware can be built to meet the needs of the
application. We will discuss these approaches in more detail in Chapter 2.

From Creators to Integrators

Semiconductor makers, meanwhile, have been chasing Moore’s Law for the past three
decades. This “law” holds that the number of transistors that can be placed on an IC
doubles every two years. It depends on a continuing migration to lower process nodes to
gain performance and die size advantages. However, Moore’s Law is hitting a wall due
to rising development costs. According to the analyst firm Semico, system-on-chip (SoC)
development costs at the upcoming 32nm process node will approach $100 million.
Much of this cost will be SoC software development.

Figure 1 – SoC development costs have soared from $20 million at 90nm to nearly
$100 million at 32nm. Software is the fastest growing part of the cost. [source: IBS]

C
HAPTER

 O

NE

EDA

 In

d
u

s
t

r
y

 F
oc

u

s
 S

h
if

t
s

 t
o

 In
t

e
g

r
a

t
io

n
 a

n
d

 P
r

ofi

t
a

bi
l

it
y

VIP

HARD
MACRO

HARD
MACRO

HARD
MACRO

DRIVER

D
ESIG

N
 IN

TEN
T

PO
W

ER
, A

R
EA

, TIM
IN

G

TLM DIGITAL

RTL DIGITAL

PROCESSOR SUBSYSTEM

On-Chip
Data MemoryEMBEDDED

CPU

“Fabric”

On-Chip
Instruction Memory

HIGH-SPEED PERIPHERAL SUBSYSTEM

PHY

PCIe G1/G2 Other IP

PHY

A H B

A P B

A X I

BRID
G

E

USB3

MEMORY SUBSYSTEM

Flash
Controller

PHY

DDR/LPDDR
Controller

DDR PHY

LOW-SPEED PERIPHERAL SUBSYSTEM

UART I2C INTC

0

90nm

$
 M

IL
LI

O
N

S

65nm 45nm 32nm 22nm

20

40

60

80

100

120

140

160

SoC SOFTWARE

ARCHITECTURE, DESIGN,
AND VERIFICATION

IMPLEMENTATION
AND MANUFACTURING

CREATE

INTEGRATEOPTIMIZE

DESIGN

VERIFYIMPLEMENT

PROFITABILITY
MANAGEMENT

PRODUCTIVITY
MANAGEMENT

Open Source, Microsoft Studio, e.g.

Hardware

Software

Applications

SYSTEM DOMAIN DESIGN ENVIRONMENT

Silicon IP, EDA tools

OS, embedded software tools

RF Audio

TV

FM

DSP

Modem

Video/
camera

interface

LCD
driver

IO/Keypad

USB

SIMPLL

Bluetooth

Wi-Fi
interface

PMU

Communi-
cation

processor

Image
processor

Application
processor

External
memory
interface

S1 S2 S3 S4

Memory

SYSTEM REALIZATION

SoC REALIZATION

SILICON
REALIZATION

• Add Embedded Software
• Add Application Software
• Add Mechanical (Board, etc.)

• Add Bare-Metal Software

• Add Packaging

IP INTEGRATION
• IP Creation
• IP Reuse
• IP Sourcing

BRIDGE

HARDWARE-
INDEPENDENT

e.g. Android
circa 2008

Hardware

Hardware-independent
Application Platform

Application
Customization

HARDWARE-DEFINED
e.g. iPhone
circa 2006

Operating System
and Hardware

Application

DISAGGREGATED

Hardware

Operating System

Application

4

To be profitable and to amortize this $100 million investment, a semiconductor company
may need to ship 80 million units. Considering that Apple had shipped a little more than
40 million units of the iPhone by the end of 2009, 80 million units is a huge target.

In the past, semiconductor companies would design six to ten ICs, realizing that perhaps
only one or two of them would catch fire and generate revenues to pay for all the rest.
At advanced process nodes that is no longer feasible. Every semiconductor design is
critical and must be applicable to a broader market. Just one development project that
goes nowhere can easily sink a company.

A few large semiconductor companies will continue to follow Moore’s Law and design the
fastest, most complex, and smallest ICs. These innovators are design creators. While they
will provide a crucial role in the industry, only a handful of such companies can exist.

Clearly there must be a way to be successful at lower volumes or with less advanced silicon.
Consumer demand is setting the stage for new kinds of connected devices we haven’t
even imagined yet. If electronic design is only available to a handful of creators who can
only make money by shipping 80 million units, few of these devices will be built and the
diversity that consumers want will not materialize.

Fortunately, there is another way. Some innovators will redefine themselves as integrators.
They will integrate at the silicon, SoC, and system levels. They will make heavy use of
externally designed silicon and software intellectual property, they will tend to stay at
mature process nodes, and they will invest heavily in embedded software development.
They will become application-focused platform providers, not “chip” providers. These
integrators must reach an elusive profitability target and get there through rapid integration
without sacrificing quality or schedule.

The integration task involves a different set of challenges than creation. Integrators need to
be able to locate IP, evaluate it, and source it more effectively than they ever have before.
They need to integrate IP into their platform hardware, using whatever configurability is
required. They need to verify and test their platforms and SoCs. Integrators also need to
integrate and verify embedded software. Furthermore, since all real-world consumer
applications involve both analog and digital circuitry, integrators will need to build and
verify “mixed-signal” platforms.

Both creators and integrators are ultimately concerned about cost, but they look at the
problem in different ways. Creators are most concerned about delivering silicon with the
best performance, the lowest power, and the smallest die size. Integrators want hardware
that is “good enough” to serve application needs, but their biggest concerns are quality,
cost, and time to market.

The EDA industry to date has only served the needs of creators. It has almost completely
ignored integrators, who need a different set of tools and capabilities. Where, for example,
are the tools for silicon IP evaluation, quality assurance, and snap-in integration? Why is
so little silicon IP “integration-ready?” And what is being done to ease the verification of
analog/digital or hardware/software interfaces?

When all you have is a hammer, everything looks like a nail. A growing number of
integrators are demanding something better.

The EDA industry to date has only served the needs of creators. It has almost completely
ignored integrators, who need a different set of tools and capabilities.

5

C
a

d
e

n
c

e
 V

IS
IO

N

From Productivity to Profitability

The number one concern of the creator is productivity. There has been much discussion
about a growing “productivity gap” in IC design as process nodes shrink and complexity
grows. Simply put, the productivity gap is the difference between silicon capacity and
engineering output—the difference between what could be, and what actually is.

Closing the productivity gap is far from a solved problem, and it is one that EDA providers
can and should continue to address. Effective productivity management brings innovative
and differentiated capabilities to design, verification, and implementation.

At the design level, productivity will be enhanced by moving to a higher level of abstraction
and by increasing design reuse. At the verification level, productivity will be improved with
a metric-driven approach encompassing simulation, formal verification, and emulation.
At the physical implementation level, EDA technology must keep up with growing digital
design complexity at advanced nodes, and support manufacturing-aware, mixed digital,
and analog co-design.

Figure 2 – Closing the productivity gap requires an integrated approach to design,
verification, and implementation.

Design, verification, and implementation must be closely integrated. All too often these
tasks are performed in isolation with limited feedback among engineering teams.

While the EDA community can and should continue to improve productivity, what the
integrator most cares about is profitability. There is a growing “profitability gap” in the
electronics industry that has rarely been discussed. It is the gap between business goals
and design cost, semiconductor unit cost, and time to market (or “delay cost”). In short,
it is the difference between what you can make and what you can make money on.

To close the profitability gap, companies must control hardware/software development
costs and lower the costs of packaging, manufacturing, and test. Beyond controlling
costs, integrators must increase revenue. This can be done by meeting tight time-to-market

C
HAPTER

 O

NE

EDA

 In

d
u

s
t

r
y

 F
oc

u

s
 S

h
if

t
s

 t
o

 In
t

e
g

r
a

t
io

n
 a

n
d

 P
r

ofi

t
a

bi
l

it
y

VIP

HARD
MACRO

HARD
MACRO

HARD
MACRO

DRIVER

D
ESIG

N
 IN

TEN
T

PO
W

ER
, A

R
EA

, TIM
IN

G

TLM DIGITAL

RTL DIGITAL

PROCESSOR SUBSYSTEM

On-Chip
Data MemoryEMBEDDED

CPU

“Fabric”

On-Chip
Instruction Memory

HIGH-SPEED PERIPHERAL SUBSYSTEM

PHY

PCIe G1/G2 Other IP

PHY

A H B

A P B

A X I

BRID
G

E

USB3

MEMORY SUBSYSTEM

Flash
Controller

PHY

DDR/LPDDR
Controller

DDR PHY

LOW-SPEED PERIPHERAL SUBSYSTEM

UART I2C INTC

0

90nm

$
 M

IL
LI

O
N

S

65nm 45nm 32nm 22nm

20

40

60

80

100

120

140

160

SoC SOFTWARE

ARCHITECTURE, DESIGN,
AND VERIFICATION

IMPLEMENTATION
AND MANUFACTURING

CREATE

INTEGRATEOPTIMIZE

DESIGN

VERIFYIMPLEMENT

PROFITABILITY
MANAGEMENT

PRODUCTIVITY
MANAGEMENT

Open Source, Microsoft Studio, e.g.

Hardware

Software

Applications

SYSTEM DOMAIN DESIGN ENVIRONMENT

Silicon IP, EDA tools

OS, embedded software tools

RF Audio

TV

FM

DSP

Modem

Video/
camera

interface

LCD
driver

IO/Keypad

USB

SIMPLL

Bluetooth

Wi-Fi
interface

PMU

Communi-
cation

processor

Image
processor

Application
processor

External
memory
interface

S1 S2 S3 S4

Memory

SYSTEM REALIZATION

SoC REALIZATION

SILICON
REALIZATION

• Add Embedded Software
• Add Application Software
• Add Mechanical (Board, etc.)

• Add Bare-Metal Software

• Add Packaging

IP INTEGRATION
• IP Creation
• IP Reuse
• IP Sourcing

BRIDGE

HARDWARE-
INDEPENDENT

e.g. Android
circa 2008

Hardware

Hardware-independent
Application Platform

Application
Customization

HARDWARE-DEFINED
e.g. iPhone
circa 2006

Operating System
and Hardware

Application

DISAGGREGATED

Hardware

Operating System

Application

6

VIP

HARD
MACRO

HARD
MACRO

HARD
MACRO

DRIVER

D
ESIG

N
 IN

TEN
T

PO
W

ER
, A

R
EA

, TIM
IN

G

TLM DIGITAL

RTL DIGITAL

PROCESSOR SUBSYSTEM

On-Chip
Data MemoryEMBEDDED

CPU

“Fabric”

On-Chip
Instruction Memory

HIGH-SPEED PERIPHERAL SUBSYSTEM

PHY

PCIe G1/G2 Other IP

PHY

A H B

A P B

A X I

BRID
G

E

USB3

MEMORY SUBSYSTEM

Flash
Controller

PHY

DDR/LPDDR
Controller

DDR PHY

LOW-SPEED PERIPHERAL SUBSYSTEM

UART I2C INTC

0

90nm

$
 M

IL
LI

O
N

S

65nm 45nm 32nm 22nm

20

40

60

80

100

120

140

160

SoC SOFTWARE

ARCHITECTURE, DESIGN,
AND VERIFICATION

IMPLEMENTATION
AND MANUFACTURING

CREATE

INTEGRATEOPTIMIZE

DESIGN

VERIFYIMPLEMENT

PROFITABILITY
MANAGEMENT

PRODUCTIVITY
MANAGEMENT

Open Source, Microsoft Studio, e.g.

Hardware

Software

Applications

SYSTEM DOMAIN DESIGN ENVIRONMENT

Silicon IP, EDA tools

OS, embedded software tools

RF Audio

TV

FM

DSP

Modem

Video/
camera

interface

LCD
driver

IO/Keypad

USB

SIMPLL

Bluetooth

Wi-Fi
interface

PMU

Communi-
cation

processor

Image
processor

Application
processor

External
memory
interface

S1 S2 S3 S4

Memory

SYSTEM REALIZATION

SoC REALIZATION

SILICON
REALIZATION

• Add Embedded Software
• Add Application Software
• Add Mechanical (Board, etc.)

• Add Bare-Metal Software

• Add Packaging

IP INTEGRATION
• IP Creation
• IP Reuse
• IP Sourcing

BRIDGE

HARDWARE-
INDEPENDENT

e.g. Android
circa 2008

Hardware

Hardware-independent
Application Platform

Application
Customization

HARDWARE-DEFINED
e.g. iPhone
circa 2006

Operating System
and Hardware

Application

DISAGGREGATED

Hardware

Operating System

Application

windows, and by designing the right product for the right market at the right time,
avoiding “feature overshoot” that provides more than consumers are willing to pay for.

The EDA industry must help close the profitability gap. Closing that gap involves three
steps:

•	 Create. Whenever or wherever hardware or software IP is developed—be it for external
or internal use—it must be created with integration in mind. It must come with the right
documentation, be fully verified, and be configurable for the end application.

•	 Integrate. Design teams must be able to rapidly integrate IP into platforms, and then
verify the complete SoC or platform, including interfaces between analog and digital
blocks as well as hardware and software.

•	 Optimize. Design teams must be able to reduce die and package costs while ensuring
quality, lowering power consumption, and trimming test costs through automation.
They must reduce the number of late-stage iterations.

Figure 3 – Silicon IP integration and die/package optimization help close the profitability gap.

Finally, a collaborative ecosystem including semiconductor design companies, IP providers,
service providers, foundries, EDA vendors, and assembly/packaging houses is needed, along
with the enablement of open, standards-based solutions. Without such an ecosystem, the
electronics industry will collapse back into a handful of large, vertically-integrated companies.

While the EDA community can and should continue to improve productivity, what the
integrator most cares about is profitability. There is a growing “profitability gap” in
the electronics industry that has rarely been discussed.

7

C
a

d
e

n
c

e
 V

IS
IO

N

Towards the Next Generation of EDA

EDA360 provides an expanded, 360-degree vision of EDA that serves integrators as well
as creators. EDA360 helps close the profitability gap through integration-ready IP creation,
IP integration, and optimization. Given that embedded software can take up half the cost
of SoC development, EDA360 also supports hardware/software integration and verification.
It thus expands the scope of EDA well beyond its original boundaries.

While traditional EDA focuses on engineering teams only, EDA360 will provide capabilities
for project and business management. It will reach across a customer’s entire global
organization—engineers, project managers, and corporate leaders—to enable profitability
and competitiveness in these challenging times.

With EDA360, users start with an understanding of the software applications that will
run on a given hardware/software platform, define system requirements, and then work
their way down to hardware and software IP creation and integration. EDA360 supports
three important capabilities:

•	 System Realization is the development of a complete hardware/software platform
that will provide all necessary support for end-user applications. The platform includes
one or more SoCs developed through SoC Realization, and adds an embedded software
infrastructure that typically includes an OS, middleware, and reference applications.
System Realization is driven by the applications that will run on the completed system.
To be successful, it requires enterprise-level program management.

•	 SoC Realization is the completion of an individual SoC (or alternative packaging
choice, such as 3D IC). Along with the integration of silicon IP developed through
Silicon Realization, SoC Realization includes “bare-metal software” such as drivers
and diagnostics. In the EDA360 vision, an Open Integration Platform facilitates IP
integration into SoCs.

•	 Silicon Realization represents everything it takes to get a design into silicon. The
result could be an analog or digital IP block for an SoC, an IP subsystem, or a complete
IC without embedded software. Silicon Realization increasingly involves the creation and
integration of large and complex digital, analog, and mixed-signal IP blocks. It goes well
beyond conventional “mixed-signal” designs that integrate a few small analog blocks
into a digital SoC.

IP creation, reuse, and sourcing are at the core of the EDA360 vision. IP integration takes
place during all three steps listed above, with software IP coming into play during SoC
Realization and System Realization. Integration is where “what is needed” from the top
meets “what is possible” from the bottom.

EDA

 In

d
u

s
t

r
y

 F
oc

u

s
 S

h
if

t
s

 t
o

 In
t

e
g

r
a

t
io

n
 a

n
d

 P
r

ofi

t
a

bi
l

it
y

With EDA360, users start with an understanding of the software applications that will run
on a given hardware/software platform, define system requirements, and then work their
way down to hardware and software IP creation and integration.

8

Chapter 2:
Application-Driven System Realization

VIP

HARD
MACRO

HARD
MACRO

HARD
MACRO

DRIVER

D
ESIG

N
 IN

TEN
T

PO
W

ER
, A

R
EA

, TIM
IN

G

TLM DIGITAL

RTL DIGITAL

PROCESSOR SUBSYSTEM

On-Chip
Data MemoryEMBEDDED

CPU

“Fabric”

On-Chip
Instruction Memory

HIGH-SPEED PERIPHERAL SUBSYSTEM

PHY

PCIe G1/G2 Other IP

PHY

A H B

A P B

A X I

BRID
G

E

USB3

MEMORY SUBSYSTEM

Flash
Controller

PHY

DDR/LPDDR
Controller

DDR PHY

LOW-SPEED PERIPHERAL SUBSYSTEM

UART I2C INTC

0

90nm

$
 M

IL
LI

O
N

S

65nm 45nm 32nm 22nm

20

40

60

80

100

120

140

160

SoC SOFTWARE

ARCHITECTURE, DESIGN,
AND VERIFICATION

IMPLEMENTATION
AND MANUFACTURING

CREATE

INTEGRATEOPTIMIZE

DESIGN

VERIFYIMPLEMENT

PROFITABILITY
MANAGEMENT

PRODUCTIVITY
MANAGEMENT

Open Source, Microsoft Studio, e.g.

Hardware

Software

Applications

SYSTEM DOMAIN DESIGN ENVIRONMENT

Silicon IP, EDA tools

OS, embedded software tools

RF Audio

TV

FM

DSP

Modem

Video/
camera

interface

LCD
driver

IO/Keypad

USB

SIMPLL

Bluetooth

Wi-Fi
interface

PMU

Communi-
cation

processor

Image
processor

Application
processor

External
memory
interface

S1 S2 S3 S4

Memory

SYSTEM REALIZATION

SoC REALIZATION

SILICON
REALIZATION

• Add Embedded Software
• Add Application Software
• Add Mechanical (Board, etc.)

• Add Bare-Metal Software

• Add Packaging

IP INTEGRATION
• IP Creation
• IP Reuse
• IP Sourcing

BRIDGE

HARDWARE-
INDEPENDENT

e.g. Android
circa 2008

Hardware

Hardware-independent
Application Platform

Application
Customization

HARDWARE-DEFINED
e.g. iPhone
circa 2006

Operating System
and Hardware

Application

DISAGGREGATED

Hardware

Operating System

Application

Figure 4 – EDA360 extends down from System Realization to SoC and Silicon Realization.

CONCLUSION

EDA360 will close the profitability gap through creation, integration, and optimization,
and it will provide badly needed support for both creators and integrators. As such, it will
ensure the continuance of a vibrant, pioneering electronics industry with thousands of
players. That industry will not only change the way we work and play—it will provide
the solutions we need for energy conservation, the environment, health care, education,
and transportation.

To gain more insight into EDA360 and the world it will shape, it is best to start with
a discussion of System Realization. Today’s most commercially successful systems are
application-driven, which means their design has to be done in that context. This requires
a platform that will allow end-user applications to meet their design intent and promise,
positively impacting both profitability and engineering productivity.

Electronics products today are all about the applications. As such, we are seeing a new
approach to systems design in which companies begin projects with an understanding
of the needs of the applications that will run on the end system. Then, they use that
understanding to develop an optimized platform to support the applications. In addition
to the hardware, this platform includes the bare metal (hardware-dependent) and
operating system layers of the software.

Traditionally, in contrast, most systems are developed from the bottom up, starting with
the hardware. The OS already exists or is developed with a very generic understanding of
the underlying hardware, and the applications are written within the limitations of the
pre-determined hardware and software infrastructure capabilities.

9

C
a

d
e

n
c

e
 V

IS
IO

N

There has been much talk in the electronic design world about what a system comprises.
In this discussion, a “realized” system is a hardware/software platform ready for the
application(s). System Realization must comprehend all levels of the software stack, from
the bare-metal software and OS to the libraries and applications.

The platform concept is central to System Realization. In the semiconductor industry,
integrators build configurable platforms constructed from libraries of components such
as intellectual property blocks to meet the stringent demands of consumerization—inter-
operability, fast time to market, and low cost. In SoC Realization as described in Chapter
3, these IP blocks are not just traditional silicon IP. They are part of an optimized IP stack—
from bare-metal software to the physical layer—that allows visibility into and control of
the hardware from the OS and the application.

A well-known platform example in the semiconductor industry is the NXP Nexperia,
which is used for connected multimedia devices. In addition to programmable SoCs and
companion ICs, Nexperia comes with reference designs, system software, and development
tools. No less important is NXP’s partnership program, which builds an ecosystem around
Nexperia solutions.

A Disjointed Approach to System Development

The traditional approach to system development is disaggregated. In most cases, hardware
design is disconnected from software infrastructure development. To create hardware,
system and SoC design teams create or buy silicon IP. This may be “hard” IP with fixed
physical layouts, or “soft” IP that can be converted to a gate-level representation with
a logic synthesis tool. Although more flexible than hard IP, soft IP is typically at the
register-transfer level (RTL), a relatively low level of abstraction that assumes a fixed
micro-architecture. Designers continue with implementation and verification until the
hardware is designed and silicon IP integration is complete.

While the operating system is generally pre-selected, the application development is largely
abstracted from the hardware. In the absence of a virtual prototype or emulator—tech-
nologies not yet widely used by software developers—applications cannot be completed
until the hardware is physically available. It then becomes a frenzied effort on a short time
schedule, carried out by programmers with little or no control of, or visibility into, the
hardware resources. Hardware/software integration and debugging occurs late in the
design cycle, causing schedule delays, cost overruns, and quality problems.

The end-user applications are then developed, most likely by a third party who has little
familiarity with the underlying hardware or software. Applications must conform to any
limitations imposed by the hardware or software. Unless it is over-designed, the underlying
platform will probably support a narrow range of application requirements, limiting
the creativity of applications developers. C

HAPTER

 T
W

O
A

p
p

l
ic

a
t

io
n

-D
r

iv
e

n
 S

y
s

t
e

m
 R

e
a

l
iz

a
t

io
n

Electronics products today are all about the applications. As such, we are seeing a new
approach to systems design in which companies begin projects with an understanding of
the needs of the applications that will run on the end system.

10

Application, software, and hardware development are done by different teams using
their own tools and IP. Teams rarely communicate and are usually located in disparate
geographies. The result is a deep chasm between each of the three steps—applications,
software, and hardware.

Figure 1 – In traditional system development, hardware design comes first and software

is appended later.

Aside from time-to-market delays, there is an inherent problem with this disaggregated
approach. Any glitches that potentially involve more than one of the three domains listed
above are very difficult to resolve. If an application crashes, is the problem in the application
itself, the infrastructure software, or the hardware? If an infrastructure software program
experiences a memory error, is the bug in the software or in a hardware register?

Many design teams lack the tools or knowledge to track down such problems quickly.
Instead, it’s often a trial-and-error effort with a lot of iteration—and sometimes no
resolution.

If hardware is designed first, and software is appended later, it is difficult to optimize at the
system level. Today, for example, many systems must be optimized for power consumption.
Advanced EDA design flows support power optimization techniques such as power shutoff
or multiple voltage levels. But if software is not optimized to take advantage of such
features, they won’t be very effective. For effective low-power optimization, software and
hardware should be considered concurrently.

To support the range of applications consumers have come to expect, we must turn the
hardware-first paradigm on its head and move toward an application-driven System
Realization approach.

Moving Toward Application-Driven Design

With application-driven System Realization, you don’t start by building hardware—you
start by envisioning the applications you want to run. Then you need a hardware platform
along with system software, including drivers, an OS, and middleware. How do you obtain
the hardware/software platform that’s right for your application? As of today, there are
two different approaches to application-driven design—hardware-defined and hardware-
independent.

VIP

HARD
MACRO

HARD
MACRO

HARD
MACRO

DRIVER

D
ESIG

N
 IN

TEN
T

PO
W

ER
, A

R
EA

, TIM
IN

G

TLM DIGITAL

RTL DIGITAL

PROCESSOR SUBSYSTEM

On-Chip
Data MemoryEMBEDDED

CPU

“Fabric”

On-Chip
Instruction Memory

HIGH-SPEED PERIPHERAL SUBSYSTEM

PHY

PCIe G1/G2 Other IP

PHY

A H B

A P B

A X I

BRID
G

E

USB3

MEMORY SUBSYSTEM

Flash
Controller

PHY

DDR/LPDDR
Controller

DDR PHY

LOW-SPEED PERIPHERAL SUBSYSTEM

UART I2C INTC

0

90nm

$
 M

IL
LI

O
N

S

65nm 45nm 32nm 22nm

20

40

60

80

100

120

140

160

SoC SOFTWARE

ARCHITECTURE, DESIGN,
AND VERIFICATION

IMPLEMENTATION
AND MANUFACTURING

CREATE

INTEGRATEOPTIMIZE

DESIGN

VERIFYIMPLEMENT

PROFITABILITY
MANAGEMENT

PRODUCTIVITY
MANAGEMENT

Open Source, Microsoft Studio, e.g.

Hardware

Software

Applications

SYSTEM DOMAIN DESIGN ENVIRONMENT

Silicon IP, EDA tools

OS, embedded software tools

RF Audio

TV

FM

DSP

Modem

Video/
camera

interface

LCD
driver

IO/Keypad

USB

SIMPLL

Bluetooth

Wi-Fi
interface

PMU

Communi-
cation

processor

Image
processor

Application
processor

External
memory
interface

S1 S2 S3 S4

Memory

SYSTEM REALIZATION

SoC REALIZATION

SILICON
REALIZATION

• Add Embedded Software
• Add Application Software
• Add Mechanical (Board, etc.)

• Add Bare-Metal Software

• Add Packaging

IP INTEGRATION
• IP Creation
• IP Reuse
• IP Sourcing

BRIDGE

HARDWARE-
INDEPENDENT

e.g. Android
circa 2008

Hardware

Hardware-independent
Application Platform

Application
Customization

HARDWARE-DEFINED
e.g. iPhone
circa 2006

Operating System
and Hardware

Application

DISAGGREGATED

Hardware

Operating System

Application

11

C
a

d
e

n
c

e
 V

IS
IO

N

In a hardware-defined approach, the hardware is pre-designed and tightly integrated with
all system software below the application level. A software development kit (SDK) provides
a single view of the system, along with everything developers need to create applications
that run effectively on the platform. The Apple iPhone uses this approach.

With a hardware-defined methodology, application developers have a stable, predictable
platform upon which to build a variety of applications. They can develop applications that
are also stable and predictable, and build and test them quickly, without any special know-
ledge of the underlying software and hardware. While these are tremendous advantages,
applications must be written in conformance with the platform’s capabilities. The hardware
cannot be reconfigured or changed. From a hardware standpoint, it’s a “closed” system.

In a hardware-independent approach, no underlying hardware is defined or specified.
This is the approach Google has taken with Android, a software stack for mobile devices
that includes an operating system, middleware, and key applications. Android is a free,
open-source offering that comes with an SDK that provides the tools and application
programming interfaces (APIs) needed for developing applications. Android provides an
“open” system.

With the hardware-independent approach to application-driven design, you can source or
build a platform optimized for your type of application—not too much capability, not too
little, but just right. In contrast, a hardware-defined platform cannot be reconfigured or
changed, and it is unlikely to be fully optimized for the application you want to run.

Figure 2 – Hardware-independent applications development makes it possible to create the

right hardware for a given application.

This does not mean that you would build or source custom hardware for every application.
Rather, with a configurable hardware/software platform, the software application
can reconfigure the hardware in a way that suits the application. Suppose you have a web
application that includes video. The application will want to open the connection between
the video graphics driver and the memory as widely as possible, perhaps closing down
other functions not needed for a web refresh. Later on, when it’s time to do some
computation, the hardware will be configured differently. The application, rather than
the CPU, is prioritizing resources.

C
HAPTER

 T

W
O

A
p

p
l

ic
a

t
io

n
-D

r
iv

e
n

 S
y

s
t

e
m

 R
e

a
l

iz
a

t
io

n

VIP

HARD
MACRO

HARD
MACRO

HARD
MACRO

DRIVER

D
ESIG

N
 IN

TEN
T

PO
W

ER
, A

R
EA

, TIM
IN

G

TLM DIGITAL

RTL DIGITAL

PROCESSOR SUBSYSTEM

On-Chip
Data MemoryEMBEDDED

CPU

“Fabric”

On-Chip
Instruction Memory

HIGH-SPEED PERIPHERAL SUBSYSTEM

PHY

PCIe G1/G2 Other IP

PHY

A H B

A P B

A X I

BRID
G

E

USB3

MEMORY SUBSYSTEM

Flash
Controller

PHY

DDR/LPDDR
Controller

DDR PHY

LOW-SPEED PERIPHERAL SUBSYSTEM

UART I2C INTC

0

90nm

$
 M

IL
LI

O
N

S

65nm 45nm 32nm 22nm

20

40

60

80

100

120

140

160

SoC SOFTWARE

ARCHITECTURE, DESIGN,
AND VERIFICATION

IMPLEMENTATION
AND MANUFACTURING

CREATE

INTEGRATEOPTIMIZE

DESIGN

VERIFYIMPLEMENT

PROFITABILITY
MANAGEMENT

PRODUCTIVITY
MANAGEMENT

Open Source, Microsoft Studio, e.g.

Hardware

Software

Applications

SYSTEM DOMAIN DESIGN ENVIRONMENT

Silicon IP, EDA tools

OS, embedded software tools

RF Audio

TV

FM

DSP

Modem

Video/
camera

interface

LCD
driver

IO/Keypad

USB

SIMPLL

Bluetooth

Wi-Fi
interface

PMU

Communi-
cation

processor

Image
processor

Application
processor

External
memory
interface

S1 S2 S3 S4

Memory

SYSTEM REALIZATION

SoC REALIZATION

SILICON
REALIZATION

• Add Embedded Software
• Add Application Software
• Add Mechanical (Board, etc.)

• Add Bare-Metal Software

• Add Packaging

IP INTEGRATION
• IP Creation
• IP Reuse
• IP Sourcing

BRIDGE

HARDWARE-
INDEPENDENT

e.g. Android
circa 2008

Hardware

Hardware-independent
Application Platform

Application
Customization

HARDWARE-DEFINED
e.g. iPhone
circa 2006

Operating System
and Hardware

Application

DISAGGREGATED

Hardware

Operating System

Application

12

Application-driven System Realization points to a 180-degree turnaround from the
disaggregated, hardware-first development model. Instead of system capabilities driving
the applications, the applications are driving the system requirements. By developing a
solution that is “just right” and not over-designed, integrators can satisfy their primary
concerns—cost, time to market, and quality—and close the profitability gap.

How EDA Needs to Respond

To support application-driven System Realization, EDA360 must help provide new
capabilities. Five such capabilities are as follows:

•	 Early software development

•	 Application-driven system integration

•	 Application-driven system verification

•	 Driver development kits

•	 Application development kits

It’s important to note that today no single vendor can provide all the solutions that are
needed for hardware/software creation, integration, and verification. That is especially
true at the System Realization level, where both embedded software and hardware
expertise are required. Ecosystem collaboration will be essential for success, as will open
standards that provide choice for customers. EDA vendors will need to partner with
embedded software companies, IP providers, and customers to provide many of the
capabilities described below.

Early software development

From an applications perspective, you simply want to get your applications up and running
as soon as possible on a hardware/software platform that meets user requirements. You
certainly don’t want a long, slow, serial process in which application development isn’t
started until the hardware is complete. Ideally, software development will start as soon
as processors are identified and there’s a rough idea about the overall architecture.

Virtual prototypes today let software developers create and debug software using fast
processor models and transaction-level models of peripheral hardware, well before any
hardware is actually built. This capability reduces time-to-market and cuts development
costs. When timing accuracy is required, however, hardware emulation tools are needed.
Emulators can find timing-dependent bugs that a virtual prototype would miss, and
emulation is now available with dynamic power analysis.

Finally, better software development support is needed for “multi-core” SoCs with multiple
processors. This is especially true with heterogeneous multi-core SoCs that have different
types of processors and different operating systems. Today, developers do a lot of manual
partitioning and trial-and-error work. Better solutions are required, and they will require
a collaborative effort that includes EDA vendors, embedded software providers, and the
academic and industrial research communities.

To support the range of applications consumers have come to expect, we must turn
the hardware-first paradigm on its head and move toward an application-driven
System Realization approach.

13

C
a

d
e

n
c

e
 V

IS
IO

N

Application-driven system integration

SoCs are assembled from libraries of analog, digital, and mixed-signal IP blocks. These IP
blocks are sometimes created internally but are more often purchased from third-party
companies or acquired from other design groups. Putting IP together effectively and
efficiently is a significant challenge that is not well served by the EDA industry today.
As a result, some companies report that IP integration can cost more than twice as much
as it costs to buy the IP in the first place.

System Realization can be viewed as an IP integration challenge, although at this level of
abstraction the IP might be an entire SoC, an operating system, or a reference applica-
tion. Hardware/software integration is taxing at the system level, especially when hardware
is designed first and the software is appended later with limited control or visibility into
hardware. The hardware-software interface is one of the likeliest places for bugs to occur,
and when they do, it’s very difficult to determine whether they came from the hardware,
firmware, software, or application.

An application-driven approach eases hardware/software integration challenges. Here,
you can start software development as soon as a few basic decisions (such as a processor)
have been made, and then abstract the hardware requirements from the software. What-if
analyses are extremely helpful at this stage. Chip-planning tools that offer rapid, early
estimations of power, die size, yield, and cost are now available. Over time, “system
planning” tools that consider both software and hardware will emerge.

As integration proceeds, an automated engineering change order (ECO) capability is
needed at every level of abstraction. Changes are inevitable, and they cannot disrupt the
design cycle. It should not be necessary to tear up a system or re-synthesize an entire
IP block because of one small change. The harder it is to change a hardware/software
platform, the greater the need for a perfectly specified platform.

Automated ECO tools are available today. These tools formally verify changes, and allow
incremental design changes that minimize disruption. This capability is still focused on
hardware, but has recently been extended to high-level synthesis.

Application-driven hardware verification

Hardware design teams know that verification consumes most of the hardware develop-
ment time and cost. Software verification and debugging are equally time-consuming.
At the System Realization level, integrators must verify that the entire system meets all
requirements and functions as expected.

System Realization requires hierarchical verification. That means you should be able to
verify IP once, check it off, and then only verify inter-block interfaces at the next level up in
abstraction. By the time you get to System Realization, only the interfaces between major
system components should remain. In the real world, unfortunately, a lot of re-verification

C
HAPTER

 T

W
O

A
p

p
l

ic
a

t
io

n
-D

r
iv

e
n

 S
y

s
t

e
m

 R
e

a
l

iz
a

t
io

n

No single vendor can provide all the solutions that are needed for hardware/software
creation, integration, and verification. That is especially true at the System Realization
level, where both embedded software and hardware expertise are required. Ecosystem
collaboration will be essential for success.

14

occurs, and verification across analog/digital or hardware/software boundaries is extremely
complex. To make things more complicated, system-level verification teams must run
extremely long test sequences to find rare “corner case” bugs.

The metric-driven verification approach advocated by Cadence provides a huge advantage
for hardware developers today. It allows design teams to start with an executable verifica-
tion plan and track coverage metrics that show how complete the verification process is.
Bringing this concept into the embedded software world, where a formalized verification
methodology is lacking, would greatly benefit System Realization. Collaboration between
IBM and Cadence has shown that a single verification plan can control and track both
hardware and software verification.

Mixed-signal verification at the system and SoC levels is extremely challenging. Analog
simulators are far too slow for system-level verification, and even with behavioral modeling
techniques, the interface between analog and digital circuitry is very complex. But digital
simulators—which are orders of magnitude faster than analog simulators—can, in fact,
simulate analog signals if they take advantage of language constructs now available in
standard analog modeling languages.

With the focus on applications, the nature of verification changes. It is no longer enough
to just run stimulus and look at waveforms or source code. To verify a video application
at the System Realization level, you want to see the video. To verify a music application,
you want to hear the music. In other words, you want to verify applications in the context
of the full system. It is possible to run portions of live applications today using virtual
prototypes or emulation tools.

Driver development kits

Today, software driver development for custom hardware is a manual effort. If you start
with an application and create or integrate hardware, developing the necessary drivers
can be a big obstacle. And with many hardware options and port configurations, you
may end up with any number of different drivers for the same hardware platform.

A driver development kit can help. Imagine, for example, a Linux driver development
environment that includes templates that make it easy to write drivers for embedded
Linux, showing software developers how to specify ports and handle interrupts.

Part of EDA360 is providing new tools that offer a “dashboard” to help companies
manage system development projects, and provide metrics that make sense in hardware
and software engineering environments.

15

C
a

d
e

n
c

e
 V

IS
IO

N

Application development kits

Apple provides an efficient software development kit for application developers. The kit
abstracts away details about the underlying hardware and software, providing only what
developers need to know to make applications work on the platform. The drawback is that
the hardware cannot be optimized or customized. Android SDKs understand Android, but
obviously not hardware that Google doesn’t provide.

There is a place for application-driven SDKs that are not based on fixed hardware or
software platforms, but still understand basic functions that are required for a particular
class of applications. For example, a kit for mobile applications would understand call
handling and routing, as well as requirements for analog or radio frequency (RF) support.

Managing the System Realization Process

The development environment that enables application-specific System Realization is itself
a “system” that needs ongoing management and guidance. Much like enterprise software
provided for businesses, enterprise-level management is needed for cost, schedule, and
personnel resource management aspects of systems development. These tools need to
manage geographically-dispersed teams as well as Silicon Realization projects that reach
across multiple companies.

Enterprise resource planning (ERP) tools provide some of these capabilities, but they
neither have access to the underlying data nor an understanding of the challenges and
requirements of electronic system development. A tool unaware of “system integration”
cannot keep you on schedule for system integration. A tool with no understanding of
“verification” cannot help you track and monitor the verification process.

Thus, part of EDA360 is providing new tools that offer a “dashboard” to help companies
manage system development projects, and provide metrics that make sense in hardware
and software engineering environments. The metric-driven verification capability available
now points the way to what needs to be done. Today, design and verification managers can
create an executable verification plan that identifies key project metrics, executes simulation
engines, and tracks coverage metrics. They can then review reports and charts that will help
them manage a “plan to closure” verification process, and determine when verification is
done. As a result, verification resources are used effectively and overall costs are reduced,
helping close the profitability gap.

Conclusion

The traditional approach in the semiconductor industry is to build the hardware, append
software later (if we really have to!) and let somebody else worry about the applications
running on pre-built hardware. But in a competitive consumer environment where
differentiation comes from the latest creative applications, and profitability is hard to
attain, this conventional approach is running out of steam. With an application-driven
System Realization approach, developers can start by envisioning the application. They
can then design at the system level as far as possible, work down to the software, and
finally build or buy the hardware.

The application-driven approach will help close the profitability gap by addressing cost,
time to market, and quality. But it’s a completely new way of looking at design, and it
places new demands on system integrators and EDA providers. EDA360 is gearing up to
meet those demands.

C
HAPTER

 T

W
O

A
p

p
l

ic
a

t
io

n
-D

r
iv

e
n

 S
y

s
t

e
m

 R
e

a
l

iz
a

t
io

n

16

While System Realization produces a complete hardware/software platform ready for
applications deployment, SoC Realization ensures the successful development of a single
SoC to meet system needs. Typically, SoCs are considered to be “done” when the silicon
is completed. In the EDA360 view, however, SoC Realization is not complete without
software device drivers for each hardware subsystem. We believe these drivers should
be developed with the SoC rather than tacked on later—and that leads to a completely
new view of how silicon IP should be provided.

Instead of thinking of IP as isolated “blocks,” we propose an IP stack that includes
“bare-metal software” as well as hardware IP. Bare-metal software refers to everything
below the OS layer, and the most prominent feature of bare-metal software is device
drivers. The IP stack depicted below also includes verification IP (VIP) that validates IP
functionality and integration. The stack may include hard macros with fixed layouts
along with synthesizable IP at the register-transfer level or the transaction-level modeling
(TLM) level. It also includes design constraints.

Figure 1 – An IP stack includes synthesizable RTL or TLM IP, verification IP, and hard macros,

in addition to driver software and design constraints.

Driver software allows the OS and application to manage hardware resources. As such,
all electronic systems must eventually incorporate device drivers. So why bundle them with
silicon IP and include them as part of SoC Realization?

Consider how drivers are typically developed. In the conventional SoC design methodology,
hardware is built first and drivers are written later, usually by someone unaware of the
details (and thus the differentiating capabilities) of the hardware. This leaves two bad
choices. One is an expensive, custom driver development effort by someone who probably
has little hardware knowledge—or if it’s a hardware person, little or no OS knowledge.
The other choice is to purchase a generic driver that will have only a general understanding
of how a given type of hardware should appear to the OS, and won’t take advantage of
all of the capabilities of your hardware.

VIP

HARD
MACRO

HARD
MACRO

HARD
MACRO

DRIVER

D
ESIG

N
 IN

TEN
T

PO
W

ER
, A

R
EA

, TIM
IN

G

TLM DIGITAL

RTL DIGITAL

PROCESSOR SUBSYSTEM

On-Chip
Data MemoryEMBEDDED

CPU

“Fabric”

On-Chip
Instruction Memory

HIGH-SPEED PERIPHERAL SUBSYSTEM

PHY

PCIe G1/G2 Other IP

PHY

A H B

A P B

A X I

BRID
G

E

USB3

MEMORY SUBSYSTEM

Flash
Controller

PHY

DDR/LPDDR
Controller

DDR PHY

LOW-SPEED PERIPHERAL SUBSYSTEM

UART I2C INTC

0

90nm

$
 M

IL
LI

O
N

S

65nm 45nm 32nm 22nm

20

40

60

80

100

120

140

160

SoC SOFTWARE

ARCHITECTURE, DESIGN,
AND VERIFICATION

IMPLEMENTATION
AND MANUFACTURING

CREATE

INTEGRATEOPTIMIZE

DESIGN

VERIFYIMPLEMENT

PROFITABILITY
MANAGEMENT

PRODUCTIVITY
MANAGEMENT

Open Source, Microsoft Studio, e.g.

Hardware

Software

Applications

SYSTEM DOMAIN DESIGN ENVIRONMENT

Silicon IP, EDA tools

OS, embedded software tools

RF Audio

TV

FM

DSP

Modem

Video/
camera

interface

LCD
driver

IO/Keypad

USB

SIMPLL

Bluetooth

Wi-Fi
interface

PMU

Communi-
cation

processor

Image
processor

Application
processor

External
memory
interface

S1 S2 S3 S4

Memory

SYSTEM REALIZATION

SoC REALIZATION

SILICON
REALIZATION

• Add Embedded Software
• Add Application Software
• Add Mechanical (Board, etc.)

• Add Bare-Metal Software

• Add Packaging

IP INTEGRATION
• IP Creation
• IP Reuse
• IP Sourcing

BRIDGE

HARDWARE-
INDEPENDENT

e.g. Android
circa 2008

Hardware

Hardware-independent
Application Platform

Application
Customization

HARDWARE-DEFINED
e.g. iPhone
circa 2006

Operating System
and Hardware

Application

DISAGGREGATED

Hardware

Operating System

Application

Chapter 3:
Software-Aware SoC Realization

17

C
a

d
e

n
c

e
 V

IS
IO

N

In either case, the applications are disconnected from the underlying hardware system.
The result is a weak link between the application and the hardware. You can eventually
build a system that will more or less work—but it will probably be sub-optimal, over-
designed or under-designed, delayed, and probably too expensive to attain profitability.

If drivers are part of an IP stack, however, they will present the full range of underlying
hardware capabilities to the operating system. This makes it easier for the OS to directly
control or configure hardware resources to meet the needs of the application. For example,
a video application can directly and immediately call upon the bandwidth it needs to do a
fast web refresh. It can then configure the hardware differently to run some computation.
This capability is diminished if drivers don’t fully comprehend the hardware.

It is also important to include design constraints with the IP stack. The most common
constraints are those for power, timing, and area. These constraints come from various
sources, including Common Power Format (CPF) files for power, timing scripts for logic
synthesis, and physical layout constraints for analog blocks. Constraints are an expression
of design intent, and they are—or should be—developed very early in the design cycle.
To preserve design intent, constraints must be comprehended throughout the design,
verification, and implementation steps that are necessary to close the productivity gap.

So why include constraints with the IP stack? Because without a thorough understanding
of design constraints, the integration of IP into an SoC will be difficult and error-prone.
Bugs are more likely to appear in the interfaces between IP subsystems, overall system
functionality may be compromised or faulty, and verification will be more costly. A well-
specified, thorough set of design constraints is thus an important aspect of “integration-
ready” IP. Constraints should be provided for all parts of the stack, including analog hard
macros, synthesizable digital IP, and driver software.

A Broader Definition of SoCs

From a silicon standpoint, an SoC is a configurable or programmable IC that includes at
least one processor, some custom logic, and a memory controller. An increasing number of
SoCs are multi-core ICs that have multiple processors of the same or different types, such
as CPUs, GPUs, DSPs, and specialized hardware accelerators. SoCs may also have on-chip
memory, peripherals, and protocol interfaces. All of these components are organized into
subsystems—a CPU subsystem, a memory subsystem, an I/O subsystem, and so on.

Given the increasing complexity of today’s SoCs, it is vital to ensure efficient communica-
tion among these subsystems. If the communication architecture is inadequate, connect-
ing subsystems together will be painful at the implementation stage. Thus it is essential to
comprehend that communication network at the architectural phase of SoC Realization.
A newer on-chip communication approach called “network on chip” (NoC) is promising
increased flexibility for multi-core SoCs.

C
HAPTER

 THREE

S
of

t

w
a

r
e

-Aw

a
r

e
 S

o
C

 R
e

a
l

iz
a

t
io

n

SoC Realization is not complete without software device drivers for each hardware
subsystem. We believe these drivers should be developed with the SoC rather than tacked
on later—and that leads to a completely new view of how silicon IP should be provided.

18

Figure 2 – SoCs are organized into subsystems. One of the subsystems provides a

communications fabric for the others.

So far we’ve used a conventional definition of SoCs. With software-defined SoC
Realization, however, drivers are provided with each subsystem. The drivers allow the
OS to directly take advantage of specialized hardware features in each subsystem,
including the on-chip communications fabric.

SoC Realization is most efficient when multiple IP stacks are assembled into IP subsystems.
These, in turn, support major hardware subsystems, such as I/Os, CPUs, or memory.
IP must also be optimized for integration. Design constraints are an important part of
that optimization.

Inside the IP Stack

Let’s take a closer look at the IP stack. Conventionally, most digital silicon IP includes a
controller layer and a physical layer (PHY). For standards-based IP, such as PCI Express or
USB, the controller is usually “soft” or synthesizable IP, while the PHY is typically “hard,”
meaning that synthesis and layout have been completed. CPU IP, however, is usually
entirely synthesizable.

Soft IP is typically built at the register-transfer level today. There’s a growing move to a
higher level of abstraction, transaction-level modeling, which will allow much faster design
and verification and a choice of micro-architectures. Transaction-level models can also be
used to build virtual prototypes for early software verification. With the recent availability
of SystemC® high-level synthesis with a high quality of results, the necessary tools for a
migration to TLM are already in place.

But TLM-based digital IP is just one part of the story. Verification IP has become increasingly
important and should be part of the IP stack. VIP provides the complex testbenches that are
needed to verify IP configuration and integration. In addition to testbenches, VIP is available
now with protocol compliance management, support for assertions, transaction-based
acceleration, and rate adapters for emulation.

VIP

HARD
MACRO

HARD
MACRO

HARD
MACRO

DRIVER

D
ESIG

N
 IN

TEN
T

PO
W

ER
, A

R
EA

, TIM
IN

G

TLM DIGITAL

RTL DIGITAL

PROCESSOR SUBSYSTEM

On-Chip
Data MemoryEMBEDDED

CPU

“Fabric”

On-Chip
Instruction Memory

HIGH-SPEED PERIPHERAL SUBSYSTEM

PHY

PCIe G1/G2 Other IP

PHY

A H B

A P B

A X I

BRID
G

E

USB3

MEMORY SUBSYSTEM

Flash
Controller

PHY

DDR/LPDDR
Controller

DDR PHY

LOW-SPEED PERIPHERAL SUBSYSTEM

UART I2C INTC

0

90nm

$
 M

IL
LI

O
N

S

65nm 45nm 32nm 22nm

20

40

60

80

100

120

140

160

SoC SOFTWARE

ARCHITECTURE, DESIGN,
AND VERIFICATION

IMPLEMENTATION
AND MANUFACTURING

CREATE

INTEGRATEOPTIMIZE

DESIGN

VERIFYIMPLEMENT

PROFITABILITY
MANAGEMENT

PRODUCTIVITY
MANAGEMENT

Open Source, Microsoft Studio, e.g.

Hardware

Software

Applications

SYSTEM DOMAIN DESIGN ENVIRONMENT

Silicon IP, EDA tools

OS, embedded software tools

RF Audio

TV

FM

DSP

Modem

Video/
camera

interface

LCD
driver

IO/Keypad

USB

SIMPLL

Bluetooth

Wi-Fi
interface

PMU

Communi-
cation

processor

Image
processor

Application
processor

External
memory
interface

S1 S2 S3 S4

Memory

SYSTEM REALIZATION

SoC REALIZATION

SILICON
REALIZATION

• Add Embedded Software
• Add Application Software
• Add Mechanical (Board, etc.)

• Add Bare-Metal Software

• Add Packaging

IP INTEGRATION
• IP Creation
• IP Reuse
• IP Sourcing

BRIDGE

HARDWARE-
INDEPENDENT

e.g. Android
circa 2008

Hardware

Hardware-independent
Application Platform

Application
Customization

HARDWARE-DEFINED
e.g. iPhone
circa 2006

Operating System
and Hardware

Application

DISAGGREGATED

Hardware

Operating System

Application

19

C
a

d
e

n
c

e
 V

IS
IO

N

Since nearly all SoCs are mixed-signal, an IP stack will likely include some analog hard
macros. Chip-level, mixed-signal verification is one of the toughest challenges faced by SoC
and system designers today. One newly available solution makes it possible to simulate
analog signals inside a digital simulation environment, while taking advantage of the
metric-driven approach available for digital verification.

What’s really new about the IP stack discussed here, however, is the inclusion of device
drivers and design constraints. When the IP creator provides the drivers, it’s no longer
necessary for someone with little or no hardware knowledge to build them after the fact.
When the IP provider includes constraints, the SoC integrator can assemble IP stacks and
subsystems with confidence.

With this new IP approach, does one architect and implement an SoC differently?
The answer is an emphatic “yes” and is found in a new concept called the Open
Integration Platform.

Open Integration Platform

SoC integration involves three key steps:

Analyze the architecture. Based on the application requirements, system designers
perform what-if analyses (business and technical), develop an overall plan for the SoC,
and define the constituent elements such as processors, I/Os, and memory. They also define
the bare-metal software that allows the OS layer to control the hardware. Chip planning
tools are currently available to help with some of these tasks by allowing rapid, what-if
analyses for power, area, and cost.

Develop or source integration-optimized IP. Whether it comes from internal sources
or third parties, designers must be able to locate the IP that’s best for the application from
the many sources available. This requires a catalog or library of IP that allows technical and
cost comparisons, as well as tools that permit what-if analysis for power, performance,
and cost. In some cases, designers will decide to create integration-optimized IP. Some of
the requirements of integration optimization include:

•	 Functionality is well-defined and documented

•	 Source, synthesis, and implementation packages are provided for integration

•	 Silicon-validated IP is available with characterization data

•	 IP meets documented quality guidelines

•	 IP blocks are parameterized

•	 IP stacks come with design constraints

•	 Test platform for IP comes with a complete verification environment for
hardware and drivers

•	 Deliverables include all necessary scripts, guidelines, checklists, and
documentation

C
HAPTER

 THREE

S
of

t

w
a

r
e

-Aw

a
r

e
 S

o
C

 R
e

a
l

iz
a

t
io

n

When the IP creator provides the drivers, it’s no longer necessary for someone with little
or no hardware knowledge to build them after the fact.

20

Integrate IP to realize the SoC. With individual blocks of IP, integration is a daunting
task. When IP is organized into pre-verified, integration-optimized subsystems, it becomes
much easier. Designers need to be able to “snap together” subsystems. The design, verify,
and implement steps needed to close the productivity gap described in Chapter 1 apply
here, and are evolving to meet the needs of the new IP integration paradigm. Productivity
continues to be an important part of the SoC Realization process and also serves to close
the profitability gap.

An Open Integration Platform provides the framework within which to carry out these
steps. It is driven by an Integration Design Environment that is analogous to the IDE
(Integrated Development Environment) used by software developers. It provides the
comprehensive set of capabilities to develop today’s SoCs, maximizing both productivity
and profitability. It is based on open standards like the OpenAccess database, the Open
Verification Methodology (OVM), the IP-XACT format for IP descriptions, and the SystemC
TLM 2.0 modeling standard.

Working from this SoC-IDE (Integration Design Environment), designers will take in
customer-specific and application-specific requirements, and bring in IP subsystems from
internal or external sources. They may make use of third-party customization services to
provide expertise needed for short periods of time—for example, to bring in some analog
expertise to resolve any questions around mixed-signal subsystems. Integrators can design,
verify, and implement any additional IP that is needed, and then assemble and verify the
completed SoC, providing all the information necessary for fabrication or handoff.

The SoC-IDE provides a “dashboard” for underlying design, verification, and implementa-
tion tools. It thus takes advantage of existing capabilities such as metric-driven verification,
low-power design, mixed-signal implementation and verification, and hardware/software
integration. These capabilities will continue to evolve to meet the needs of SoC integrators.

Figure 3 – An Open Integration Platform makes it possible to produce an integrated

SoC from IP subsystems.

FOUNDRY

THIRD-PARTY
SERVICES

INTEGRATION
SERVICES

THIRD-PARTY IP

INTEGRATION
OPTIMIZED IP

(Software and Subsystems)

INTEGRATION DESIGN ENVIRONMENT
DESIGN

VERIFYIMPLEMENT

CUSTOMER EXPERTISE

21

C
a

d
e

n
c

e
 V

IS
IO

N

SoC Realization as described here calls on designers to create integration-optimized IP
when needed, to integrate both internally created and sourced IP, and to then verify and
optimize the SoC to meet system requirements. Thus, the steps that close the profitability
gap—create, integrate, optimize—are crucial to SoC Realization as well.

Conclusion

The EDA360 view of SoC Realization calls for an expanded definition of SoCs that includes
the bare-metal software, along with a more comprehensive way of looking at IP as a
“stack”—from the physical layer and the protocol (control) layer to the drivers along with
associated verification IP and design constraints. By including driver software, a critical
weak link is repaired, allowing the applications to work through the OS to call upon the
precise hardware resources it needs.

To fully support this vision of SoC Realization, new technology is required. One step is
to make it easier for IP creators to build drivers. Another step is to facilitate thorough,
metric-driven IP verification to the point where re-verification of IP is unnecessary. And
EDA360 will need to provide an Open Integration Platform, with its ability to run what-if
analysis to determine the best possible architecture and integration, develop an initial SoC
architecture, and quickly integrate verified IP into verified SoCs.

The type of IP we’ve described here can only come about through a collaborative
ecosystem. EDA companies, embedded software and OS vendors, IP providers, foundries,
and end-user companies must all work together to expand the definition of IP to
bare-metal software and complete subsystems.

The approach outlined in this chapter will open the door to profitable, application-driven
System Realization. Instead of spending time and money to have a specialist develop
custom drivers, or accepting the limitations of a “generic” driver, SoC integrators will have
driver software that presents the capabilities of the underlying hardware. Instead of flying
blind and running into problems with integration, SoC developers will follow a constraint-
driven integration methodology. The approach described here helps integrators meet the
goals of cost, time-to-market, and quality, therefore closing the profitability gap.

C
HAPTER

 THREE

S
of

t

w
a

r
e

-Aw

a
r

e
 S

o
C

 R
e

a
l

iz
a

t
io

n

With individual blocks of IP, integration is a daunting task. When IP is organized into
pre-verified, integration-optimized subsystems, it becomes much easier.

22

EDA has always been concerned with Silicon Realization. In fact, that’s been nearly the
entire focus of the EDA industry since its inception. From an EDA360 point of view, Silicon
Realization is no longer the starting point for system development—yet it remains as
essential as ever, and it’s becoming much more challenging.

Silicon Realization represents everything it takes to get a design into silicon, through
design, verification, and implementation. It stops short of software development and
integration, which are steps that come with SoC Realization and System Realization.
The output of Silicon Realization may be an analog, digital, or mixed-signal IP block that’s
later integrated into a SoC; an IC that does not require embedded software development;
or an SoC ready for software integration.

As the electronics industry moves towards application-driven System Realization, and
concerns rise about a growing profitability gap, the scope and complexity of Silicon
Realization challenges will mushroom. Complexity will grow even more complex with the
move to advanced process nodes such as 32nm and 22nm. Both the EDA industry and its
customers must understand and respond to the challenges.

Since interfacing to the real-world requires analog circuitry, Silicon Realization nearly always
involves a combination of analog and digital IP. But Silicon Realization goes far beyond the
traditional view of “mixed-signal” design, which typically involves the importation of a few
hard analog macros into a digital SoC. Silicon Realization involves the creation and integra-
tion of extremely large, complex analog and mixed-signal blocks—including blocks that
were entire chips in previous process generations—into SoCs that support broad ranges
of functionality. These days some analog/mixed-signal blocks may be programmable or
configurable, as is the case with software-defined radio.

Figure 1 – Many SoCs today integrate large digital, analog, and mixed-signal blocks, including
audio, video, and wireless interfaces that may have previously been entire chips.

Chapter 4:
EDA360 Enables Silicon Realization

VIP

HARD
MACRO

HARD
MACRO

HARD
MACRO

DRIVER

D
ESIG

N
 IN

TEN
T

PO
W

ER
, A

R
EA

, TIM
IN

G

TLM DIGITAL

RTL DIGITAL

PROCESSOR SUBSYSTEM

On-Chip
Data MemoryEMBEDDED

CPU

“Fabric”

On-Chip
Instruction Memory

HIGH-SPEED PERIPHERAL SUBSYSTEM

PHY

PCIe G1/G2 Other IP

PHY

A H B

A P B

A X I

BRID
G

E

USB3

MEMORY SUBSYSTEM

Flash
Controller

PHY

DDR/LPDDR
Controller

DDR PHY

LOW-SPEED PERIPHERAL SUBSYSTEM

UART I2C INTC

0

90nm

$
 M

IL
LI

O
N

S

65nm 45nm 32nm 22nm

20

40

60

80

100

120

140

160

SoC SOFTWARE

ARCHITECTURE, DESIGN,
AND VERIFICATION

IMPLEMENTATION
AND MANUFACTURING

CREATE

INTEGRATEOPTIMIZE

DESIGN

VERIFYIMPLEMENT

PROFITABILITY
MANAGEMENT

PRODUCTIVITY
MANAGEMENT

Open Source, Microsoft Studio, e.g.

Hardware

Software

Applications

SYSTEM DOMAIN DESIGN ENVIRONMENT

Silicon IP, EDA tools

OS, embedded software tools

RF Audio

TV

FM

DSP

Modem

Video/
camera

interface

LCD
driver

IO/Keypad

USB

SIMPLL

Bluetooth

Wi-Fi
interface

PMU

Communi-
cation

processor

Image
processor

Application
processor

External
memory
interface

S1 S2 S3 S4

Memory

SYSTEM REALIZATION

SoC REALIZATION

SILICON
REALIZATION

• Add Embedded Software
• Add Application Software
• Add Mechanical (Board, etc.)

• Add Bare-Metal Software

• Add Packaging

IP INTEGRATION
• IP Creation
• IP Reuse
• IP Sourcing

BRIDGE

HARDWARE-
INDEPENDENT

e.g. Android
circa 2008

Hardware

Hardware-independent
Application Platform

Application
Customization

HARDWARE-DEFINED
e.g. iPhone
circa 2006

Operating System
and Hardware

Application

DISAGGREGATED

Hardware

Operating System

Application

23

C
a

d
e

n
c

e
 V

IS
IO

N

Silicon Realization also involves the creation of full-custom digital, analog, and RF IP blocks
and ICs. Concerns about productivity and profitability are just as acute for custom designers
as they are in the digital world—and there’s far less design automation. Progress is needed
in custom IC design as well, and some is already occurring. One example is the develop-
ment of constraint-driven analog design flows.

While System Realization and SoC Realization are primarily tasks for integrators, both
creators and integrators perform Silicon Realization. Thus, EDA360 must address the needs
of creators by closing the productivity gap, and also address the needs of integrators by
closing the profitability gap. The fundamental idea is to go from concept to silicon as
quickly as possible and as cheaply as possible, while retaining the high quality that end
consumers have come to know and demand.

Three Concepts Behind Silicon Realization

Three common themes are behind most of the approaches that are needed to close the
productivity and profitability gaps in Silicon Realization:

Merge top-down design and bottom-up design. The traditional design approach is
“bottom up”—designers start with the silicon and append the software and the applica-
tions later. The emerging application-driven approach starts with the application, defines
the system, and then abstracts the hardware and software requirements from the system
definition. But it’s not all top-down; information must flow upward from the silicon level
as well. It is essential to understand power, performance, and cost at the system level, and
this can happen only if information about silicon design, packaging, and manufacturing is
made available at higher levels of abstraction.

Raise the level of abstraction. There are many ways to work at a higher, richer level of
abstraction. The current move by digital design and verification teams to transaction-level
modeling represents one approach, but there are others. For example, analog designers are
using behavioral modeling languages such as Verilog-AMS, and can now simulate analog
circuits in a digital environment using the “wreal” data type. However it’s done, higher
levels of abstraction boost productivity, slash time-to-market, and lower costs.

Apply unified design intent. Whether for full-custom or digital design, a single,
complete, and coherent representation of design intent will help avoid errors throughout
the Silicon Realization flow. This unified design intent captures all aspects of the design—
including function, constraints, and realization—to ensure everything is working towards
a common goal and a common understanding. Working from this common design intent
reduces the risks of specification misses and re-spins, and ensures that changes are tracked
and implemented correctly and consistently throughout the design process.

C
HAPTER

 fo

u

r
EDA

3
6

0
 E

n
a

b
l

e
s

 S
il

ico

n
 R

e
a

l
iz

a
t

io
n

Silicon Realization involves the creation and integration of extremely large, complex
analog and mixed-signal blocks—including blocks that were entire chips in previous process
generations—into SoCs that support broad ranges of functionality.

24

Closing the Productivity Gap in Silicon Realization

Closing the productivity gap requires innovative and differentiated capabilities in design,
verification, and implementation. EDA360 needs to deliver the following capabilities to
close the productivity gap.

Design for productivity

Raise the abstraction level early in the design process. For both analog and digital
design, it is necessary to capture the design in as rich and high-level a form as possible, as
early as possible. Then, tools can provide a greater degree of automation of subsequent
design activity. This allows greater flexibility earlier in the design when critical design
implementation decisions are made. With TLM, for example, digital designers are not
locked into a micro-architecture, and automated SystemC high-level synthesis makes it
easy to explore different choices and target key design requirements. On the analog side,
using Verilog-AMS or wreal models helps designers capture design intent early and
accelerate the verification cycle for IP integration.

Tackle multiple objectives simultaneously. Traditionally, engineers are forced to make
“guesstimates” on how the final design will work, or focus on just a small number of
design constraints. A better approach is to provide the early up-front data that’s needed
to support informed decisions on both business and technical levels. Performance, power,
yield, manufacturability, and cost must be considered concurrently rather than in isolation.
Expanding on today’s chip planning tools, EDA360 tools will allow a rapid, concurrent
“what-if” analysis enabled by higher levels of abstraction.

Use a single source of design intent. There is often a loss of fidelity as one phase of
silicon design is handed off to those working on the next phase. With a single, verified
source of design intent, there is no loss of fidelity, nor is there a need for translation.
In digital design, the “golden source” can reside in a number of different forms—such as
TLM or register transfer level IP and Common Power Format models for capturing power
intent. In an advanced mixed-signal design system, a common set of analog and digital
constraints created at the design stage maintains intent throughout Silicon Realization.

Verify for productivity

Holistic verification—use the best tool for the job. There are many different
techniques for digital verification, including simulation, formal verification, and emulation.
Approaches to analog simulation range from transistor-level SPICE simulation to analog
behavioral modeling with the Verilog-AMS language. Working with the single goal of
verifying the design intent, and utilizing a verification plan, EDA tools must choose the
best approach for any given phase of the verification process and feed this back to the
verification plan. The result is a holistic approach to verification using the most productive
methods for each task.

Whether for full-custom or digital design, a single, complete, and coherent representation
of design intent will help avoid errors throughout the Silicon Realization flow.

25

C
a

d
e

n
c

e
 V

IS
IO

N

Apply metric-driven, predictable verification. A modern IC design can contain more
potential states than the number of atoms in the universe (roughly 1080), so testing every
possible combination is not feasible. What’s needed is intelligent verification that “knows”
what’s been tested and what hasn’t. A metric-driven, executable verification plan makes
it possible to monitor and track testing through coverage metrics and determine what still
needs to be verified. The same plan should also serve mixed-signal verification for analog
and digital interfaces.

Use the right verification abstraction. Abstraction is not only important for design—
it is also critical for verification. When performing verification we need to use the most
expressive description available, and provide just the right amount of detail to get the job
done. For example, using a timed testbench and a netlist model would be a very inefficient
way to perform traffic modeling in a network switch. Likewise, using a SPICE abstraction
of a mixed-signal block during performance testing would lead to significant delays in the
verification cycle.

Implement for productivity

Use single-pass design. Avoiding iterations requires a “right the first time” approach
enabled by the feed-forward of important design data into each phase of the design
implementation. As a given design element is implemented, enough information needs to
be fed to the next design task to avoid potential problems and preserve critical assumptions
from the previous steps. Even so, changes are inevitable. With an automated engineering
change order (ECO) capability tied to formal verification, the design process can continue
smoothly when a change occurs or a bug is fixed.

Understand realization. It is important to know how a final design will be implemented.
If the design is an analog or digital IP block, designers should know what types of SoCs it
might serve and what other IP it might be interacting with. If the final design will be pack-
aged in a stacked-die (3D IC) configuration, this will influence many choices. In each step
of the design process, data about the intended implementation must be made available
at the appropriate levels of abstraction to make effective design tradeoffs.

Intelligently partition large digital blocks. At advanced silicon process nodes such
as 32/28nm, a single digital IP block may contain millions of gates. We are truly entering
the era of “Giga Gate, Giga Hertz” SoC design. This results in many challenges, including
complex manufacturing rules, design data size explosion, design for test, yield ramp,
variability, and many others. Large, digital design elements should not have to be artificially
partitioned into smaller pieces due to tool restrictions or limitations in design expertise.
EDA360 tools will expand capacity and scope, allowing designers to work in a more natural
fashion, and to avoid many of the obstacles due to overly complex and mismatched
physical and logical hierarchies in a design. This becomes especially important as higher
levels of abstraction allow engineers to create significantly larger portions of a design.

C
HAPTER

 fo

u

r
EDA

3
6

0
 E

n
a

b
l

e
s

 S
il

ico

n
 R

e
a

l
iz

a
t

io
n

For both analog and digital design, it is necessary to capture the design in as rich and
high-level a form as possible, as early as possible. Then, tools can provide a greater degree
of automation of subsequent design activity.

26

Closing the Profitability Gap in Silicon Realization

To close the profitability gap for integrators, EDA360 must support creation, integration,
and optimization. This presents a somewhat different set of challenges and solutions
compared to those for the productivity gap.

Create for profitability

Use high levels of abstraction. The same prescription was given earlier for creators,
but the focus for integrators is a little different. Here, the real concern is allowing integra-
tors to focus on the value they really add by eliminating as many unnecessary steps as
possible and reducing busywork. Creating or sourcing IP at the TLM level is one way to
accomplish that goal.

Make IP reuse practical. Reuse is difficult and has not been cost-effective for most
companies. It often costs more to reuse IP than to build it from scratch. Integrators who
create IP must think carefully about where it will go, what applications it will serve, and
what capabilities it does and does not need. They must provide appropriate documentation
and deliverables, and pay attention to quality and configurability. Finally, the IP should be
thoroughly verified so that re-verification is not needed during the integration phase.

Maintain design intent. A single understanding of design intent that is carried
throughout the creation process will prevent costly errors. This understanding should
be documented and executable by all parts of the design process. Leveraging greater
automation based on this common design intent will have significant cost savings.

Integrate for profitability

Apply piece-by-piece signoff (“iterative correctness”). A significant portion of the
overall design cost is due to redundant verification, or verification that is performed at
an inefficient phase of the design. As each IP component is built or externally sourced,
integrators should ensure it has the quality and capability to do the job. If components
are properly validated and verified, integrators need only worry about the interfaces and
higher-order functions when they assemble the components. There should be no need
to re-verify the individual blocks, even those sourced externally.

Use enablement services. A company that sources outside IP may temporarily need
some specialized expertise they don’t normally have. For example, a digital design company
might source some analog IP blocks and need help with mixed-signal integration and
verification. There is significant cost and a recruitment challenge in building an internal
team with enough understanding to satisfy this expertise requirement. A more cost-
effective approach would be to take advantage of third-party services to fill this short-term
expertise gap.

A metric-driven, executable verification plan makes it possible to monitor and track
testing through coverage metrics and determine what still needs to be verified. The same
plan should also serve mixed-signal verification for analog and digital interfaces.

27

C
a

d
e

n
c

e
 V

IS
IO

N

Offer visible integration. When analog blocks are brought into a digital SoC, or digital
blocks are brought into a mostly analog IC, the imported analog or digital components are
often “black boxes” with no visibility into internal structures. Or, they are fully elaborated
models. This results in ineffective integration suffering from either too much visibility, which
affects performance, or too little visibility, which impacts quality. Both tools and providers of
IP should enable just enough visibility to ease the integration task.

Optimize for profitability

Optimize for cost. While creators may emphasize technical differentiators such as power
and performance, integrators are deeply concerned about the cost of design. They need
to select the most cost-efficient implementation and avoid any possible over-design. The
traditional approach involves overdesigning with the significant use of “guardbands” to
minimize potential problems and closure issues. For example, guardbands may require
a timing margin as high as 30 to 50 percent, forcing the chip design to support a much
broader-than-needed range of timing performance or variability, which in turn introduces
poor quality, significant waste, and lost profitability per part. By leveraging the character-
istics such as what-if analysis based on higher levels of abstraction, single pass design, and
implementation awareness, the need for this kind of over-design can be avoided.

Manage changes. Changes are inevitable, and it is the management of this change that
can make the difference between a profitable design released on schedule, and a design
that fails to make it to market. As such, it is important to simplify and manage change
within the design process. For integrators, this is true not only for changes made by their
own team, but by any external teams or suppliers from which IP was sourced. When
changes happen, their impact should be minimized, localized, and tracked through to
completion using a range of capabilities such as enterprise management, ECO automation,
and metric-driven verification. Managing change effectively is managing profitability.

Consider software as a service. Many design teams struggle to deploy a design
environment even when using a reference flow defined by their production partner. Much
of this difficulty is centered around the lack of appropriate expertise and subtle differences
in infrastructure. Using Software-as-a-Service allows a design environment to be fully
configured and externally hosted using either dedicated third-party servers or “cloud”
computing. SaaS can help integrators leverage the capabilities they need when they need
it. This alone can greatly reduce design cost and accelerate profitability. By making this
environment production-aware, the environment is optimized not just for the customer,
but for the foundry that is manufacturing the design. The result is a highly optimized
design process all the way from design to manufacturing.

In brief, the best way to address profitability is to have a top-down view of what you’re
trying to build, automate as many details as possible, and reuse verified components that
can simply be snapped together. Lego blocks provide a good analogy. With Lego blocks,
you start by envisioning a project such as a city street. You join multiple small objects
together to build bigger objects, like houses. Then you can place multiple houses on a
street. But the starting point is still the large-scale vision of what you plan to build.

C
HAPTER

 fo

u

r
EDA

3
6

0
 E

n
a

b
l

e
s

 S
il

ico

n
 R

e
a

l
iz

a
t

io
n

Reuse is difficult and has not been cost-effective for most companies. It often costs
more to reuse IP than to build it from scratch.

28

Conclusion

Silicon Realization has been around for decades, but when we look at it through the
eyes of both creators and the new breed of integrators, a new perspective emerges.
While traditional EDA has long focused on aspects of Silicon Realization, the ever-increasing
scope of challenges means there is more work than ever to close the productivity gap.
For example, EDA360 seeks to raise the abstraction level for both analog and digital
design; use single sources of design intent; employ metric-driven verification; use single-
pass, correct-by-construction design; and provide intelligent partitioning at the logical
and physical levels.

The newer challenge is helping integrators close the profitability gap. Here, EDA360 will
provide solutions that make IP reuse easier, allow “iterative correctness,” optimize cost,
and manage change across external suppliers and internal teams. But EDA360 is not
just about tools and technology; it also expands into business and engagement models.
Software-as-a-Service models, for example, will help integrators improve the design process
and control costs, while targeted services engagements will provide access to expertise on
an as-needed basis.

With this chapter, we end this Vision Paper where EDA typically begins—the production
of cost-effective, power-efficient silicon. But for us, it is the end of a journey that began
with end-user demand for multiple, concurrent software applications; anywhere, anytime
connectivity; and audio, video, and 3D graphics. We have seen how the development of
ever-more creative applications is driving system development and giving rise to a new
class of innovators called “integrators.” We have shown how the needs of integrators are
different from those of the creators the EDA industry has always served.

As with any crisis or inflection point, there is both danger and opportunity for existing
providers. At Cadence, we see the opportunity. We plan to be leaders in a revitalized EDA
industry that will serve both creators and integrators. We will work with our ecosystem
partners to provide the necessary support for System, SoC, and Silicon Realization, and to
enable a new era of application-driven design. Please join us and let us know what you
think at www.cadence.com/eda360.

©2010 Cadence Design Systems, Inc. All rights reserved. Cadence and the Cadence logo are registered trademarks of Cadence Design Systems, Inc. SystemC is a registered trademark

of the Open SystemC Initiative in the U.S. and in other countries and is used by permission. All others are properties of their respective holders. 21451 04/10 MK/ED/PDF

Corporate Headquarters
2655 Seely Avenue San Jose, CA 95134
Phone: 408.943.1234
Fax: 408.428.5001
www.cadence.com/eda360

