
A C++ ASIC Design Methodology Facilitated by a C++-Verilog Translator

Dan Joyce, Andreas Nowatzyk*, and Robert Stets

Non-Stop Hardware Development Western Research Laboratory
Compaq Computer Corporation Compaq Computer Corporation

Austin, TX 78728-6699 Palo Alto, CA 94301
dan.joyce@compaq.com agn@acm.org, robert.stets@compaq.com
 a

to

 an
e
++
 in

ur
s
 an

d
the
e

he
es
ols
le
ted
s

nd
g
nd
ol
ive a

+-
e

e,
In
++
n
ith

ate
Abstract
In this paper, we discuss a C++-based hardware design
methodology that employs an automatic C++-Verilog
translator. The choice of C++ as the primary RTL
representation enables a simulator with speed at least 50
times faster than a comparable Verilog simulator, and the
automatic translator enables a single C++ code base to
drive a standard Verilog-based ASIC design flow. Our
discussion includes details on our mix of custom and
commercial tools and on our experiences with this
methodology.

1. Introduction

Today’s large and complex hardware designs require
increasingly large amounts of simulation to validate.
Unfortunately, the simulation speed of hardware design
languages such as Verilog are relatively slow primarily due
to the event-driven nature of their simulation engines. As a
result, it is often infeasible to simulate full designs. Instead,
designs are typically split into modules, and these modules
are driven by bus functional models (BFMs) and tested in
isolation or in small groups. Unfortunately, a BFM-based
testing approach is not appropriate for large designs with
tightly coupled modules that can only be effectively tested
in full or near-full configurations.

The Piranha chip multiprocessor [1] is such a design
with a large collection of tightly coupled modules. In a
simplified description, a Piranha chip includes eight
processors, each with their own level one cache, a level
two cache shared by all processors, and a mechanism for
maintaining cache coherence both inside a chip and then
also across multiple chips connected via a high speed
multiprocessor interconnect. The cache coherence
mechanism operates off of the global state of the system,
thereby making it difficult to test modules in isolation.

Furthermore, the complexity of the entire chip produces
very challenging verification task. A very high
performance simulation environment is necessary 
thoroughly test such a design.

Motivated by these concerns, we chose to develop
RTL model of Piranha in C++, rather than in Verilog. W
believed the simulation speeds obtained in a C
environment would be much greater than those obtained
a Verilog environment, and would thereby make o
verification effort feasible. Importantly, this choice wa
made despite the fact that Piranha is to be fabricated in
ASIC design flow based on synthesizable Verilog. 

To reach the ASIC design flow, we originally intende
to hand translate the C++ code to Verilog. However, as 
individual modules inside Piranha grew rather larg
(between 5,000 and 10,000 lines of C++ code), t
challenge of maintaining two separate code bas
correspondingly increased. We decided to investigate to
for C++ to Verilog translation. In evaluating the possib
tools, we were concerned with the quality of the transla
Verilog and with the level of C++ coding restriction
imposed by the translation tool.

After investigation and some in-house testing, we fou
the C-Level System Compiler [3], a C++ to Verilo
translation tool, to perform well on the above criteria, a
so we incorporated the tool into our design flow. The to
enables us to use a single C++ source code base to dr
conventional ASIC design flow.

In the rest of this paper, we further discuss our C+
based methodology. In the following Section, we provid
details on our C++ RTL, the C++ simulation infrastructur
and the C-Level C++ to Verilog translation process. 
Section 3, we discuss the performance of our C
simulator, along with results from our Verilog translatio
and synthesis runs. Finally in Section 4, we conclude w
a discussion of our experiences.

2. C++-driven Design Methodology
Our design methodology is based on a cycle-accur

RTL model of the Piranha chip1 written in a “stylized”

*The author has moved to the Robotics Institute at Carnegie
Mellon University, 5000 Forbes AVE, Pittsburgh, PA 15213.



at

y
ion
++
ilt

++
are

ed
hat
r,
’s
ck
ng

to
or
++

he
ors
 a
’s
ore
ss
ion
of
can
 in

el
urce
ary
p
es
he
to

the
By
”
n on

ort
sign

a

tes
, the
version of C++. Figure 1 shows the Piranha chip broken
down into its main modules, which include the first level
data and instruction caches (dL1 and iL1), second level
cache (L2), coherence engines, system controller, packet
switch, input and output queues, and network router. These
modules have been implemented in our stylized C++, and
are targeted for machine translation to Verilog. Of the
remaining modules, the Alpha processor (CPU) and
Memory Controller (MC) are legacy modules that were
originally implemented in Verilog. The Intra-Chip Switch
is a physical design challenge and so is generated by a
datapath compiler directly to Verilog. To maintain the
efficiency of our C++-based simulation, we have
simplified C++ representations of these three modules. As
described in Section 2.2, we do not require the full
functionality of the Alpha Core to test our cache coherence
mechanism, so a simplified C++ version of the Alpha Core
is acceptable.

In the remainder of this Section, we will discuss the
stylized C++ code and special considerations for C++-
based hardware design, the Piranha C++ simulator, and the
automated C++-Verilog translation process.

2.1 Piranha Stylized C++
Our use of stylized C++ code, rather than standard C++,

as our RTL code serves three purposes:

• to hide complex C++ syntax from hardware designers,

• to incorporate source code constructs useful for
hardware designs (e.g. bit field accesses), and

• to provide a rich source format for preprocessors th
enable the design flow

The first two points help maintain the work efficienc
of designers trained in more tradition hardware descript
languages, while the third point enables much of the C
Piranha Simulator (PS1) infrastructure to be bu
automatically.

The stylized C++ code deviates from standard C
code in that each code module (corresponds to a hardw
module) is divided into sections marked by reserv
keywords. The code sections act as annotations t
identify information necessary to build the full simulato
namely the module’s input/output port list, the module
internal registers, the logic to execute on a rising clo
edge (moore logic), and the logic to execute on a falli
clock edge (mealy logic).

The PS1 preprocessor uses this information 
automatically construct the source for the simulat
executable. Each hardware module is modeled as a C
class, whose primary member functions implement t
moore and mealy logic for the module. The preprocess
use the input/output port list to construct prototypes for
module’s moore and mealy functions. The module
internal registers, which need to hold state across mo
and mealy function invocations, are modeled as cla
member variables, and then the moore and mealy funct
logic is taken directly from the corresponding sections 
the stylized C++ code. If desired, the preprocessors 
also automatically insert code for test coverage analysis
the modules.

After constructing the C++ source for classes to mod
each module, the PS1 preprocessor also uses the so
annotations to automatically construct the necess
simulation infrastructure, namely the main clock loo
which calls the moore and mealy functions for all modul
at the appropriate times during a clock cycle. Again, t
preprocessor uses the input/output port list in order 
determine the inter-module signals and to instantiate 
necessary code to model these connections. 
automatically creating the clock loop and the “wiring
between modules, the PS1 preprocessor reduces burde
the toolsmith responsible for simulation infrastructure.

The PS1 preprocessor is also designed to supp
extended source code constructs for the hardware de
domain. Currently, the preprocessor recognizes 
variable[END:START] construct as a bit field
operation where END and START mark range of bits in the
named variable.

2.1.1 A Difficulty in C++-based Hardware Modeling

C++ is an inherently sequential language that execu
statements as they occur in a sequential block. As such

1. The Piranha project consists of two chips: the chip multi-
processor (CMP) and the IO processor (IOP). The IOP is a 
scaled down version of the CMP that also includes a PCI 
subsystem. Both chips are being developed under the same 
methodology. In this paper, we will use the CMP as our il-
lustrative example. Details on the IOP architecture can be 
found in an earlier paper [2].

L20

 

CPU0

iL1 dL1

Intra-Chip Switch

MC0

0

1

31RDRAM

RDRAM

RDRAM

...

L27

CPU7

iL1 dL1

MC7

0

1

31RDRAM

RDRAM

RDRAM

...

Input
Queue

Output
Queue

Router

Coherence
Engine

Coherence
EngineIn

te
rc

on
ne

ct
 L

in
ks

Direct
Rambus Array

System
Control

P
ac

ke
t 

Sw
it

ch

Figure 1. Module diagram of the Piranha chip multiprocessor.The 
dashed line represent the chip boundary.



re
the
of

1
d.

ha
ires
ull-

The
st

tore
by

he
te.

and
he

ines

of
e
n

ng
els,

ce
n
to
d

ed
+
o-
he
ion
ted

 to
ial
ne
w

p,
his
language does not model concurrent activities, and this
missing feature complicates the modeling of hardware.

This shortcoming specifically impacts a C++-based
hardware model in the area of register manipulation. If a
register is modeled as a conventional variable in C++, an
update to that variable will take effect immediately. The
programmer must take care to ensure that subsequent
statements executing during the same simulated clock
cycle do not access the register, otherwise the statements
will see a register value that was intended to be seen in the
next clock cycle.

In PS1, we use two techniques to avoid this problem,
depending on the scope of the accesses to the register. If
the register is private to a module, a programmer can
conceivably structure code to ensure the register variable is
updated only after all read accesses are performed. This
approach is fragile and error prone, so instead, we follow a
convention that register updates are performed to a
separate variable named for the register with “_ns” suffix
(ns is short for “next state”). For example, count_ns
holds the next state value of the count register. After all
code for the clock cycle is finished, the programmer must
include code to copy the values of all _ns variables into the
corresponding register variables, thereby updating their
value for the next clock cycle. With this convention, it is
easy for the designer to ensure that all register updates are
performed after all read accesses.

This approach is not feasible for register values that
span modules. For these modules, we require the variables
to be modeled with a custom-crafted C++ “Signal” class.
This class intercepts all read and write accesses to the
variable by overriding the cast and assignment operators,
respectively. When an assignment occurs, the Signal class
implementation stores the new data value in a pending
structure that also includes the clock value at which it
should take effect. All cast operations compare the current
clock to the clock of a pending data value, update the
current value if the appropriate time has passed, and then
pass back the current value of the variable. The class also
reports an error if the register is updated more than once a
clock cycle. The Signal class induces more overhead than
plain variable operation, however it ensures correct register
semantics.

To ensure that register semantics are maintained across
modules, we require all moore cycle functions to only have
register values (implemented by the Signal class) as inputs.
Mealy cycle functions may have register inputs or
combinational logic inputs produced from the Moore cycle
in the corresponding module. (PS1 currently does not
ensure a Mealy function combinational input is sourced
from a Moore function. This requirement is left to the
designer to enforce.) With these requirements, we ensure
that register values are maintained correctly for the entire

simulated clock cycle.

This set of coding conventions facilitates C++ hardwa
design by providing a structured method to manage 
tricky issue of register manipulation. Also, the set 
annotations in our stylized C++ allows much of the PS
simulator infrastructure to be automatically constructe
PS1 is described in more detail in the next Section.

2.2 PS1 Simulator
The PS1 simulator has been built to test the Piran

coherence mechanism as a whole. This task only requ
memory operations, and so we have replaced each f
blown Alpha processor1 with a very efficient BFM that
launches simulated memory requests into the system. 
BFM is driven by an interpreted, coroutine-based te
language. Coroutines are used to model Load and S
memory operations. One of these coroutines begins 
issuing the operation to the L1, and then it tracks t
progress of the operation by inspecting internal chip sta
The coroutines maintain a separate image of memory, 
use this image to dynamically check system operation. T
interpreted test language and the Load and Store corout
make it very quick and easy to construct new tests.

As mentioned above, the primary implementations 
the Intra-Chip Switch and the Memory Controller hav
been done in Verilog, however we also have writte
simplified C++ models of these modules. The remaini
modules under test are the actual implementation mod
all written in C++. 

When the goal is to stress the coheren
implementation, PS1 is built with all C++ models. I
addition to this functionality, PS1 also has the option 
insert Verilog models in place or along side of specifie
modules. The former allows a Verilog module to be test
in the simulation environment, while the latter allows C+
and Verilog models of the same module to be c
simulated, with PS1 reporting any miscomparisons of t
outputs of the modules at each cycle. This co-simulat
technique is used to verify the accuracy of our transla
Verilog models.

2.3 C-Level C++ to Verilog Translation
The C-Level System Compiler translates C++ code

Verilog. Fortunately, as we had written a substant
amount of C++ code before deciding on using machi
translation, the System Compiler places relatively fe

1. The actual Alpha processor implementation can be validated in isola-
tion using tools from Compaq’s Modeling, Tools, and Verification grou
which is responsible for validating production Alpha processors. For t
verification task, the level of performance from Verilog is acceptable.



we
cal
40
ha
ay
he

ur
nix
no
m

tire
sign
of
is
the
l
s.
s,

 1
ry
p
ll
in
e

constraints on the C++ code structure. We already used
preprocessors to transform our stylized C++ to standard
C++ for simulation. The preprocessors only needed slight
modification to allow them to also translate to C-Level
style C++. Once this was done, the C-Level C++ could be
read directly into System Compiler tool. 

However, beyond the preprocessors, some
modifications are still required to our original stylized C++
code. The main constraint is that a module’s code must be
split into distinct sections based on whether the code is
implementing combinational logic or updating register
variables. Fortunately, our _ns variable usage convention
described in the previous Section had largely kept
combinational and register update logic separate, therefore
for all modules except for one, it was easy to transform our
code into the distinct, required sections. The sole exception
was the code for the coherence engines, where the register
update and combinational logic was carefully intertwined.
Significant effort was required to transform this module
into a suitable C-Level format.

There is also a small set of programming idioms for
which System Compiler automatically creates state
machines. A designer must be careful to avoid these idioms
to avoid unwanted state machines. These idioms are clearly
defined in the System Compiler documentation [3]. In a
few cases, our original C++ code contained these idioms
and required simple, localized modifications.

In all but the case of the coherence engines, our
modules could be changed to a C-Level format with a
minimum of changes and without sacrificing code clarity
or simulation performance.

As described in this Section, we use a stylized version
of C++ to build an RTL model of our Piranha chip.
Through automated processes, this C++ representation is
used to build a full system simulation environment and also
is converted into equivalent Verilog representations. In the
next Section, we discuss the practical results of our
simulation environment and the quality of our translated
Verilog code, along with details on our experiences in
building and using this infrastructure.

3. Results and Experiences
In this Section, we will assess the impact of our

methodology choice by discussing the efficiency of our
C++ simulation, the results from our initial synthesis runs,
and also several unexpected issues that arose from our
choice.

During this Section, we will frequently refer to the tools
listed in Table 1. These are the mix of custom and
commercial tools used in our methodology.

3.1 PS1 Simulator Results
To quantify the execution speed of the PS1 simulator 

have performed a number of experiments on our lo
cluster. The cluster consists primarily of AlphaServer ES
machines. These machines have four 500MHz Alp
21264 processors, each with their own on-chip 64K, 2-w
associative L1 cache and a board-level 4M L2 cache. T
processors share 8GB of RAM. We performed o
experiments on one of these machines running Tru64 U
4.0F in multiuser mode. During our tests, there was 
activity on the system except for the normal syste
background daemons.

The best comparison would have been to have the en
design in C++ and compare the speed to the entire de
in Verilog. But unfortunately the Verilog representations 
the full chip were not available at the time we did th
evaluation. We created two configurations of PS1 using 
Verilog available. The first configuration, which we wil
call PS1_C++, consisted only of C++ coded module
These were 46 instantiations of 10 different module
including 8 dL1’s, 8 iL1’s, 8 L2’s, 2 Coherence Engines,
Router, 1 Input Queue, 1 Output Queue, 8 Memo
Controller models, 8 DRAM models, and 1 Intra-Chi
Switch. The second configuration, which we will ca
PS1_Mixed consists of 8 dL1’s in Verilog, and the rest 
C++. Obviously this gives a very low estimate for th

Tool Purpose

Piranha 
Preprocessors

Perl and LEX/YACC tools used to 
translate stylized C++ to PS1 or 
CLevel format and to automatically 
construct PS1 infrastructure.

PS1 Primary simulator for C++ envi-
ronment.

cxx
(Compaq)

DEC C++ compiler (for building 
PS1)

System Compiler 
(C-Level)

C++-Verilog Translator

VCS
(Synopsis)

Verilog simulator

DC-Shell
(Synopsys)

Synthesis tool

DCPI 
(Compaq)

Profiling tool used to help optimize 
PS1 performance

Table 1: The mix of custom and commercial tools 
used for Piranha. Commercial tools are indicated by 
including their developer’s names in parentheses.



ify
2,
en
g
d
e.

og
ove
.

ns
e
nd
ng

he
n
nly
ad
e
 is
he
is

++

ck-
t

 
 the 
simulation speedup. With only one of 10 types of modules
in Verilog and the other 9 in C++ the memory image is
much smaller than would be the case for all the modules in
Verilog. Also, with 8 instantiations in Verilog and the other
38 in C++ there are obviously many events not being
simulated in Verilog.

We executed three of tests that exercise all the L1’s,
L2’s, MC’s, and Intra-chip Switch extensively (code
coverage of approximately 70%). Each of the three tests
were executed three times, and then the results of the nine
tests were used to calculate an average number of
simulated cycles per seconds. (The average values of the
three PS1_C++ tests differed by less than 5%, while the
average values of the three PS1_Mixed tests differed by
less than 1%.)

We found the PS1_C++ full C++ simulation averaged
approximately 1050 simulated clocks per second, while the
PS1_Mixed mixed Verilog and C++ simulation averaged
only 20 simulated clocks per second. The mixed simulation
incurs overhead in transferring signals between the Verilog
and C++ domain (using a PLI interface), and so we further
investigated the results to ensure that this transfer overhead
did account for the relatively slow Verilog simulation
performance.

We used the DCPI [1] continuous profiling tool to
gather information on time breakdown by function for
executions of both PS1_C++ and PS1_Mixed. DCPI is
highly optimized, and typically adds only 1-3% overhead
for most workloads.

In the case of PS1_Mixed, we were only able to ident
our C++ functions that simulate the Intra-chip Switch, L
and MC, and also our routines to transfer signals betwe
domains. The remaining functions were from the Verilo
simulation. We found that our C++ routines in PS1_Mixe
accounted for slightly less than 5% of the execution tim
The remaining 95% of the time was spent in the Veril
simulation, so we can reasonably conclude that the ab
simulation speeds are representative of a Verilog design

Without more intimate knowledge of the Verilog
simulation internals, we can not point to the exact reaso
for the relatively low Verilog simulation speed. Ideally, w
would be able to separate out the infrastructure a
simulation overhead from the actual time spent simulati
the design.

Fortunately, we can extract this separation from t
PS1_C++ execution time using DCPI profile informatio
and our knowledge of the source code. We found that o
11% is spent in the simulation infrastructure and overhe
(e.g. main clock loop, Alpha BFM, and test languag
interpreter). The remaining 89% of the execution time
spent simulating the entire Piranha. The efficiency of t
simulation execution -- almost nine tenths of the time 
spent directly simulating the design -- is the key to the C
environment’s superior performance.

3.2 Verilog Translation and Synthesis Results
As mentioned, our physical design tools and the ba

end of the ASIC design flow work off of Verilog and no

Module L1 L2 RT OQ CE

Approximate
Size

5,000 C++ lines
2500 registers
5 RAMs

10,000 C++ lines
8000 registers
8 RAMs

1,000 C++ lines
50 registers
1 RAM

1,000 C++ lines
50 registers
2 RAMs

10,000 C++ lines
3500 registers
6 RAMs

C++ Modification Complete Complete Complete Complete Progressing

Verilog Translation
(Translation Time)

Complete 
(10 minutes)

Complete 
(45 minutes)

Complete 
(1 minute)

Complete 
(1 minute)

Verilog Structural 
Simulation

Passing tests: 
70% coverage

Passing tests: 
70% coverage

Passing tests:
80% coverage

Passing tests: 
80% coverage

Synthesis to Gates
(Synthesis Time)

Yes
(6 hours)

Yes
(4 days)

Verilog Gate-Level 
Simulation

Passing tests: 
70% coverage

Table 2: Status of Verilog translation, simulation, and synthesis for the Level 1 (L1) and Level 2 (L2) caches, the
Router (RT), the Output Queue (OQ) and the Coherence Engines (CE) The other chip modules have not begun
Verilog translation process yet. 



s.
 of
ds.
d
d
iate
e

og
1 co-

l in
ted
alls

the
e

ok
ner
l

h
see
n
g 4
e
s a
to

ted
chy
lat
to
hy
e
nd

and

sful.
ing

n

C++. Our initial plan was to manually translate the C++
modules to Verilog, but toward the end of our C++
development, we found that the CLevel System Compiler
could potentially perform a machine C++-to-Verilog
translation. The main advantage of this approach is that, if
successful, we would only have to manage one code base.
The criteria for success is a faithful translation to Verilog,
synthesizable Verilog code, and a straightforward path for
timing re-designs.

To use the System Compiler, a one-time modification of
the C++ code is necessary to change the code to a suitable
organization for C-Level. After this one-time modification,
the System Compiler can be used to translate the C++ to
Verilog, which we then simulate at the structural level and
synthesize to a gate-level representation. The gate-level
representation is simulated for correctness and checked for
long timing paths. We have started this process for five of
the modules, and the status of each module is shown in
Table 2. Although we are not complete with the entire chip,
we feel that we have progressed far enough to draw
conclusions on the process. In the following, we discuss
each of the listed modules in more detail and also include
bits of own experience with this process.

L1: The L1 was the first major module to pass through the
Verilog translation process. The original C++ code was
written in a very structural manner and followed the _ns
convention, described in Section 2.1.1, for manipulating
internal registers, so the only major change to support C-
Level was to introduce explicit RAM and LPRA models.
Originally, these memories were simply modelled by plain
arrays in C++. C-Level translates plain arrays into discrete
registers, and so to avoid this, we had to model our
memories in C++ as distinct classes (or, as an alternative,
functions). The System Compiler recognizes these classes
as separate modules and does not instantiate discrete
registers in their place. This change, along with a code
reorganization to conform to C-Level expectations,
required approximately a day or two. The L1 C++ code
was then ready for translation to Verilog.

For several weeks however, the translation attempts
were fruitless, as the complexity and size of the L1 stressed
the System Compiler implementation. The compiler
successfully produced translations of the L1, however, the
translations contained very large numbers of temporary
registers, which bogged down the synthesis tool. After a
few improvements to the System Compiler by the C-Level
team, the L1 now translates to Verilog in approximately 10
minutes on a 448MHz UltraSPARC II machine with 4G of
RAM, and then the corresponding synthesis run completes
in under 6 hours on a similar machine. 

After obtaining a Verilog translation that passed

reasonably through the synthesis step, we then worked on
simulating the structural and the gate-level version of the
L1. This process verified the faithfulness of the Verilog
translation. The only problems encountered during the
simulation were two variables that had incorrect bit widths
in C++ and the proper use of our vendor’s RAM macro
Parts of our C++ code use full integers to model all sizes
variables, as this method is faster than using C++ bit fiel
With regard to the Vendor RAM macros, it require
several iterations to work out the desired RAM timing an
to ensure that PS1 transferred signals at the appropr
time during the clock cycle. After working through thes
two problems, both the structural and gate-level Veril
are passing random stress tests, as validated by our PS
simulation process. 

The L1 synthesis runs have also been successfu
terms of timing and size. The long timing paths are isola
to areas of aggressive design, and the physical size f
within our conservative estimates.

L2: The L2 began the translation process shortly after 
L1. Like the L1, the modifications the C-Level format wer
largely constrained to explicit RAM and LPRA
instantiations and a code reorganization. This step to
longer than the L1 however, as the responsible desig
was not as familiar with C++ and with the C-Leve
requirements.

The L2 quickly encountered significant problems wit
the synthesis step, however. The larger size of the L2 (
Table 2) is proving difficult for our synthesis tool. As ca
be seen from Table 2, the L2 synthesis step is takin
days, which is much too long for iterative design. Th
synthesis time can be reduced by instantiating the L2 a
hierarchical design. Hierarchy allows synthesis tools 
work on smaller, more manageable chunks. 

Our synthesis problems with the L2 were exacerba
by the fact that our preprocessors did not support hierar
within a module, and this led designers to implement f
designs for each module. We are currently working 
instantiate hierarchy inside the L2 design. The hierarc
will in essence provide smaller chunks of work for th
synthesis tool, thereby reducing synthesis time a
improving the quality of the results.

Router, Input Queue, Output Queue: The Router Input
Queue and Output Queue are relatively small modules, 
were trivial to port to a C-Level format. The Verilog
translation and synthesis steps have been very succes
The next step for both of these modules is to begin tim
re-designs.

Coherence Engine: The Coherence Engines have prove



p’s

the

g
he
g,
ct
tly
es.
pe

he
d of
he
nt
en

ed
e-
as
in
ode

nt

ts
 to
le,
the
d.
 to

 is
ct
S1
L2

er
p to
e
ore
he
lex
 use

nt
ere
 a
us
w.

ed
to be particularly difficult to port to a C-Level format. The
original C++ designer did not use the _ns convention, but
instead carefully reasoned about the register semantics in
the code. The designer was very successful, as the
coherence engines have shown by far the fewest of bugs in
our simulations. Currently, a different designer, the
designer who was to be responsible for the manual Verilog
translation, has been restructuring the C++ code to first use
explicit memories and second to separate the code into
combinational and synchronous logic, as System Compiler
requires. The modifications to the code have been
significant, and although now complete, are not simulating
correctly. We are adding a temporary capability to PS1 to
allow side-by-side simulation of two C++ versions of a
module to help debug the System Compiler
transformations. Also, judging by the size of the module
and our experience with the L2, we most likely need to
instantiate hierarchy within the module.

We believe our work this point has clearly proven the
feasibility of using a C++-to-Verilog translator, in this case
C-Level’s System Compiler, to drive the physical design
tools in an ASIC flow. In our case, our fortuitous decision
to use the _ns register manipulation convention simplified
the preparation of our code for the System Compiler,
however unfortunately, our initial decision to forgo
hierarchy within our modules has hampered our physical
design process. We have found that the System Compiler’s
translations are very faithful and that timing re-designs can
be made easily as our C++ code is fairly structural. The
limiting factor on the time to do re-designs is the synthesis
step itself, and this step needs to be improved for one, and
probably two, of our modules.

3.3 Practical Issues
An important part of evaluating this methodology

obviously lies outside of the above “performance” results.
Our experiences have led to a few interesting insights,
especially with regard to Verilog-trained designers in this
environment and to our simulation infrastructure.

3.3.1 Verilog Designers in New Environment

The Verilog designers in our group have adapted very
well to our C++ environment. The designers have been
able to make isolated changes, for example for timing re-
designs or code reorganization for C-Level, as it has been
easy for them to pick up the basic C++ syntax. At times
however, their required changes have quickly gone beyond
their C++ knowledge. The most notable example is in the
implementation of explicit RAM and LPRA models. These
models are best implemented as either full C++ classes or
templates, and in some cases, we used C++ static storage
classes to maintain simulator efficiency. These cases all

required considerable assistance from our grou
experienced C++ programmers.

The switch to a new coding language obviously has 
primary effect on the efficiency of our Verilog-trained
designers. Aside from this effect, some of the Verilo
designers were initially uncomfortable with aspects of t
environment, such as the lack of integrated text editin
simulation, and waveform display tool and also the fa
that our C++ environment requires signals to be explici
registered before they are included in waveform trac
The former issue will most likely be addressed if this ty
of C++-based methodology matures commercially.

3.3.2 Proprietary Simulation Environment

The primary disadvantage to our methodology is t
dependence on and the required development overhea
the custom tools, most notably the PS1 simulator. T
simulation infrastructure has required a significant amou
of effort to build. In some cases, the custom work has be
very beneficial as the functionality has been develop
exactly for our needs. A specific example is the coroutin
based test language. The coroutine functionality h
greatly simplified our test development and aided 
debugging. In other cases however, such as the PS1 c
coverage functionality, it would have been more efficie
to use commercial solutions.

Although PS1 is relatively mature and stable, i
required maintenance overhead is still significant due
the project’s changing environment. As a simple examp
PS1 uses a commercial waveform dump format and 
corresponding viewing tool that is no longer supporte
Due to resource constraints, we have not been able
upgrade to a more current waveform utility.

This example of a utility that becomes unsupported
relatively minor in that it does produce a first-order impa
on the project. A more serious example is found in our P
preprocessors. Due to the long synthesis times, the 
cache had to be split into a hierarchy of small
submodules. Our PS1 preprocessors were only set u
handle one level of hierarchy. Instead of incurring th
overhead of fixing the preprocessors, we chose the m
expedient route of instantiating the hierarchy directly in t
L2 C++ module. This choice exposed some of the comp
C++ syntax to the hardware developer, an issue that the
of a preprocessor intended to avoid.

3.3.3 Miscellaneous Issues

Being a cycle simulator, the C++ simulation environme
does not simulate asynchronous clocks accurately. If th
are multiple clocks in the design, they must be made
multiple of the fastest clock. In our design, asynchrono
clock crossings are verified by code inspection and revie

Vendor macros are modelled in the C++ by handcod



e

k,
ira-

o-

l,
functions that simulate the macro. Of course in the Verilog
simulation, the actual macro is used. This process can also
be used for timing critical areas of the design where gates,
either built manually or with a gate compiler, are needed.

Overall, our experiences indicate that the key factor in
successfully deploying this methodology is to have enough
talented and knowledgeable C++ programmers to support
the project. These programmers are needed not only to
maintain and improve the environment, but also to assist
the Verilog designers in implementing their designs.

4. Conclusions
Driven by our project requirements of a high

performance verification environment and a standard ASIC
design flow, we have developed a novel C++-based ASIC
design methodology and the requisite tools. In this
methodology, we leverage a C++ RTL representation to
enable a high performance simulator that is a factor of at
least 50 greater than a comparable Verilog-based simulator,
and a C++-to-Verilog translation tool to allow a single C++
source code base to drive a conventional Verilog-based
ASIC design flow.

In the process of using this methodology, we have
found that Verilog-trained designers can move relatively
easily into a C++-based design environment, given a set of
coding conventions to help manage the details of
modelling concurrency on top of an inherently sequential
language and also given reasonable access to team
members with C++ programming experience. With regard
to the feasibility of a single C++ source code base, we have
also found that writing C++ in a cycle accurate manner
produces code that is amenable to high quality machine
translation to Verilog. If this path is taken however, the
C++ RTL should be written with back-end consumers of
the Verilog in mind. In particular, the C++ designer should
add in sufficient hierarchy so as to simplify the task for
synthesis tools.

On the negative side, we have found that the necessary
reliance on custom tools can be very burdensome, and
absolutely mandates a sufficient resource of C++-capable
designers to maintain and improve the environment. This
disadvantage may lessen as commercial C++-based
hardware design environments mature. Currently missing
from these environments are capabilities for automatically
building the simulation infrastructure (similar to our
preprocessing tools), high level languages for test stimulus
construction (similar to our interpreted test language), and
of course a high performance simulation environment
capable of handling large designs very efficiently.

5. Acknowledgments
The Piranha design methodology is the product of the

entire the Piranha team. Two of the authors, Joyce and
Stets, are members of the current team, as are Luiz
Barroso, Mark Dorland, Kourosh Gharachorloo, Ray
Harlan, Tom Heynemann, Sachin Idgunji, Scott Johnson,
James Keithan, David Lowell, Uma Maheswari, Joel
McCormack, Harland Maxwell, Harold Miller, Mosur
Ravishankar, Scott Smith, Jeff Sprouse, Hemendra
Talesara, Alex Wakefield, Robert Willey, and Yuan Yu.
Former team members, Robert McNamara and Ben
Verghese, contributed significantly to the PS1 simulator
and the Piranha preprocessing tools.

6. Bibliography
[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,

S.-T. Leung, D. Sites, M. Vandevoorde, C. A. Waldspurger,
and W.E. Weihl. “Continuous Profiling: Where Have All Th
Cycles Gone?”. In Proceedings of the Sixteenth Symposium on
Operating Systems Principles, pages 1-14, Saint-Malo,
France, October, 1997.

[2] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzy
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. “P
nha: A Scalable Architecture Based on Single-Chip Multipr
cessing”. In Proceedingds of the Twenty-Seventh Annual
Internation Symposium on Computer Architecture, pages 282-
293, Vancouver, Canada, June, 2000.

[3] CLevel Design, http://www.cleveldesign.com/home.htm
July 31, 2000.


	A C++ ASIC Design Methodology Facilitated by a C++-Verilog Translator
	Dan Joyce, Andreas Nowatzyk*, and Robert Stets
	Abstract
	1. Introduction
	2. C++-driven Design Methodology
	2.1 Piranha Stylized C++
	2.1.1 A Difficulty in C++-based Hardware Modeling

	2.2 PS1 Simulator
	2.3 C-Level C++ to Verilog Translation
	3. Results and Experiences

	3.1 PS1 Simulator Results
	3.2 Verilog Translation and Synthesis Results
	3.3 Practical Issues
	3.3.1 Verilog Designers in New Environment
	3.3.2 Proprietary Simulation Environment
	3.3.3 Miscellaneous Issues
	4. Conclusions
	5. Acknowledgments
	6. Bibliography
	Table 1: The mix of custom and commercial tools used for Piranha. Commercial tools are indicated ...
	Table 2: Status of Verilog translation, simulation, and synthesis for the Level 1 (L1) and Level ...






