AUDIT YOUR DESIGN TO DETERMINE AND EVEN REDUCE THE AMOUNT
OF RANDOM TESTING NEEDED

Dan Joyce, Staff Engineer, Hewlett-Packard Co., Austin, TX
Raymond Harlan, Project Engineer, Hewlett-Packard Co., Austin, TX
Ramon Enriquez, Staff Engineer, Hewlett-Packard Co., Austin, TX

Abstract

This paper describes a three step formal audit process which will identify designs that have a high
risk of corner case bugs and will require a large amount of random testing to verify. The audit will also
highlight areas of the design which are at the most risk. Methods are demonstrated which reduce both the
amount of random testing needed to verify a design and the risk associated with corner case bugs show-
ing up after tape-out.

I ntroduction

The verification effort and the number of test vectors needed to verify a design can be determined
by looking at the combination of the Directed and the Random testing needed. The directed testing is
easy to determine and is proportional to the size and complexity of the design. Thisisjust testing that the
design does what the specification saysit can do.

Determining the amount of Random Testing required is much more difficult. Random Testing is
used to find the Corner Case bugsin the design. These account for many if not most post-silicon bugs. [1]
Random Testing is aso the area of testing responsible for the recent exponential increase in test cycles
needed to verify today’s most complex chips.

This paper proposes an audit which will help to measure the amount of effort to verify that a
designisfree of corner case bugs. Exhaustive testing isanice ideal, but most designs are too complex for
that goal to be reached. This audit takes this into account and considers other ways to find corner case
bugs.

Randomly Timed Simuli

Corner Case bugs are caused when Randomly Timed Simuli interact in the design. Each Design
Under Test (DUT) has severa externally generated events that stimulate the design. When two of these
events can occur with random timing relative to each other, those two events are considered Randomly
Timed Simuli. To fully verify the device against Corner Case bugs, al combinations of timing between
those two stimuli must be simulated. An example would be amemory read of the DUT as one event, and
an interrupt of the DUT as the second event. If those events could occur with the “read event” first and
the “interrupt event” 5 clocks later, or 20 clocks later, or 3 clocks before or any other timing, then al tim-
ing relationships of those two events must be simulated. Exhaustive testing would cover al of the timing
combinations. Exhaustive testing is possible with 2 or even 3 randomly timed events, but the number of
clocks of ssimulation grows exponentially as the number of Randomly Timed Stimuli are added.

Figure 1 "State Machines affected by 4 Randomly Timed Stimuli* on page 2 shows an example
design with five state machines affected by four Randomly Timed Stimuli. This audit is based on the

assumption that a large or complex state machine will have alarge number of Corner Cases to verify. In
addition, the number of Randomly Timed Stimuli which interact simultaneously in that state machine will
indicate the effort needed to simulate all the Corner Cases in that state machine.

Note: We don't make any attempt to figure out how many Corner Case Bugs are in the design, we just
assume all Corner Cases should be simulated to verify that there are no Corner Case Bugs.

From the figure, you can see that Shemp is alarge state machine with 4 Randomly Timed Stimuli
affecting it simultaneously. Therefore, Shemp has alarge number of corner cases AND with 4 Randomly
Timed Stimuli, it will take many, many clocks of simulation to exhaustively simulate all combinations of
timing of those 4 stimuli. On the other hand, Curly is smaller and has only 3 Randomly Timed Stimuli
affecting it ssmultaneously. So there are less Corner Cases to verify, and they are easier to verify. Moe is
very small and has only one Randomly Timed Stimulus. Larry is very large but also has only one Ran-
domly Timed Stimulus. Larry and Moe have no corner cases at all since there are no randomly timed
interactions. Even though Larry is larger than Shemp, it has no risk to Corner Case bugs where Shemp
has a high risk.

Figure 1. State Machines affected by 4 Randomly Timed Stimuli

W Y W
W Y Y
=3 A v - =

State Machine
Shemp ‘z

Randomly R=4 SV

Timed M oe

Stimulus W R=1

\ Z
. -
z

Note: Randomly Timed Simuli are not the same as Asynchronous Sgnals. Lots of Randomly
Timed Stimuli exist in designs that are completely synchronous - even designs with a single clock zone.

Designing for Minimal Random Testing

One of the biggest challengesto ASIC design is the Asynchronous Clock Crossing. Bugsin asyn-
chronous clock crossings are notoriously hard to find with simulation. Just as important, these bugs rarely
have a work-around if found post-silicon. The typical approach to designing an Asynchronous Clock
Crossing is to limit the logic dealing with signals from both clock domains to the smallest amount of
logic possible. The next step is to use techniques proven to handle the possible problems (double register
to avoid metastability, fifos for data transfer, etc.). Finally, the logic is thoroughly reviewed.

Randomly Timed Stimulus and the Corner Case bugs they cause are similar to Asynchronous
Clock Crossings and the Asynchronous bugs they cause in that they are very hard to find in ssmulation
and they are unlikely to have an acceptable work-around after tape-out. For these reasons they signifi-
cantly add to the total risk in adesign.

Designersshould deal with Randomly Timed Simulusand the Corner Case Bugsthey cause
in the same waysthey deal with Asynchronous Clock Crossings.

To do this, the team must identify each of the randomly timed stimuli that affect the design. Then
architect the design such that the amount of logic affected by those randomly timed operationsis as small
as possible. This will reduce the number of corner cases in the design, thus reducing risk. It will also
reduce the amount of code that must be exhaustively tested, code inspected, or covered; thus reducing
effort.

From arandom testing perspective, aworst case design is one with many randomly timed stimuli,
AND all logic in the design affected by each randomly timed event. This type of design would fail the
Verification Audit described in this paper. Such a design would require a re-architecture to reduce the
number of corner casesin the design before simulation and/or reduce the effort to simulate them.

Verification Audit

The following Verification Audit has been created to assess the risk of Corner Case Bugs in a
design. The Verification Audit consists of three steps:

Design Overview.

Analyze the design to determine the random events that affect it. For each interface determine
what random events stimulate the logic, e.g., read/write, requests. Include error conditions that introduce
randomly timed events like time-outs on a master port, or aborts on a slave port. These should not include
errors which do not introduce randomly timed events like parity errors.

Design Analysis.

Identify each state machine in the design. Determine how many random events affect each state
machine simultaneously. If two Randomly Timed Events affect a single state machine, but never at the
same time, corner cases will not be created. One event must affect the state machine while the other one
isstill being serviced. Also assign arelative size or complexity to each control logic structure. This could
be a count of the number of states, or lines of code, but a better sizing would be the number of arcsin the
state machine or the size of the binary decision diagram to show complexity.

Thissizing effort is pretty simple, but determining the number of Randomly Timed Stimulus that
interact in a state machine simultaneously requires the collaboration of the designers, since they posses
the intimate knowledge of the design. An EDA (Electronic Design Automation) tool that does this auto-
matically would be very nice to reduce the effort and chances of error.

Table/Equation Analysis.
Plug in the numbers for each control element that is affected by more than one random event. The
value calculated in the equation will give an indication if it is a problem design.

Effort-Risk ~= S;*(Ry- 1)*2R+ . + Sy*(Ry - 1)*2™N

* Ry isthe number of random events that affect each control element.

» Sy isarough size estimate of the control structure, relative to the size of all the control logic in the
design (including control logic that is not affected by more than one random stimulus). Therefore it
should be between 0.0 and 1.0 for each control structure and adding all control structures together
should equal 1.0. Size can be determined by using a simple line count, state count, or arc count in
each state machine.

An Effort-Risk value of less than 1.0 would indicate a relatively low risk design for corner case
bugs, and should not require too much random testing. This indicates that design either has a very small
amount of control logic affected by multiple random stimuli, and the logic affected by randomly timed
stimuli is affected by only a small number. It would still be worth investigating state machines that con-
tribute significantly to the total. These should be taken into account in the Test Plan. On the other hand,
an Effort-Risk value well over 1.0 should raise red flags. All control structures which contribute signifi-
cantly to the total should be examined for possible redesign. Again, the individual components in the
eguation will point to areas of concern, and the Test Plan should take these into account. At this point
there is no hard rule on how low the risk number should be, or how much concern should be placed on a
very high number. The equation should be used as a rough indicator which can point to problem designs
and further point to problem areas in the design. Once those areas have been highlighted a more detailed
analysis of the problem would take into account the specifics of the design.

See “Appendix: Effort-Risk Equation” on page 9 for a description of the derivation of the equa-
tion.

Methods to Redesign Logic

There are methods to reduce risk when the Verification Audit shows a design is at high risk to
Corner Case bugs. These are some example solutions that have been used to reduce the amount of logicin
adesign stimulated by multiple randomly timed stimuli. Think of it as making the majority of the logic -
especially complex logic - always perform the same boring operations. State machines that always go
through the same few sequences will cause the least trouble and will get through code coverage the easi-
est.

Single Point Arbitration

If there are two or more randomly timed stimulus attempting to use a shared resourceit is better to
handle the arbitration in a single small state machine designed just for that purpose. The rest of the con-
trol logic that handles the request should be kept insulated from the multiple requests and this more com-
plex logic should be designed to handle each requestor in the same way - if possible. This will limit the
amount of logic affected by the random timing of the requests to just the arbiter state machine. It reduces
the number of corner cases in the logic, reduces the amount of code to be inspected and reviewed, and
reduces the number of lines of code to analyze with Code Coverage. See Figure 2 "Single-Point Arbitra-
tion" on page 5.

| solate Aborts or Errorsto Where They Occur

Isolate logic that deals with randomly timed error cases. One common source of randomly timed
stimulus are aborts seen by “master ports’. Thisis where a port is being accessed by an off-chip master
device. If the master aborts the operation in the middle or just drops off (releases the control lines) and
goes away, a randomly timed event has occurred. In this case, if the request operation has already been
sent out by the master port, just alow it to complete as normal. Do not propagate the abort with a ran-
domly timed cancel operation that may interfere with the return operation. At the slave port, responses
(normal or time-out) will be randomly timed events. But the response won't interact with the request
operation in progress as long as no cancel operation is allowed to propagate past the dotted line. See
Figure 3 "Isolate Random Event Logic" on page 5.

Figure 2: Single-Point Arbitration

Multiple Requestors Interface State
Machine(s)

—>
Target Interface
S

4/
0

Multiple Requestors Arbiter State Interface State
Machine Machine(s)

——
Target Interface
<

"

Figure 3: Isolate Random Event L ogic

“Master Port” Sate “Slave Port”
Machines

Aborts

Initiator Target

—=0 O ORO,

v

If the master aborts the
operation, the slave port SM
sends an abort operation. This
operation collides with response.

|
|
|
Initiator | Target
MO0 oKelp'
| |
|
|
State Machines are in Idle
states before the
Once an operation passes the Logic in between response returns.
dotted line, allow it to finish. dotted lines always
Do not propagate a "cancel" or sees the same operation

an "abort" operation. interaction (none).

Logical Firewalls

Often multiple designs will be put on a single chip to reduce part count. Sometimes the need
arises to communicate between the otherwise separate logic. Designers must keep in mind the cost in ver-
ification of doing this. Putting a firewall between the designs and keeping them completely separate will
reduce corner cases because it will keep the randomly timed stimulus from one design from interacting
with the randomly timed stimulus in the other design. If some communication is required, do it carefully

as you would with an asynchronous clock crossing, i.e. very few signals handled carefully with very little
logic. See Figure 4 "Logical Firewalls' on page 6.

Figure4: Logical Firewalls

Inputs for Module 1

n¥

Inputs for Module 1

1)

[|
. _1
| Logic Module1 —9» g I Logic Module1 ~ —»
‘ (0]
| Outputs i 1 Outputs
for Module 1 me— for Module 1
L — — - — T L Il N BN B B =

Firewall

Remainder of ASIC Remainder of ASIC

State Machine Division

Often state machines have to “watch” for a pulsed signal (only asserted for a small number of
clocks). One solution is to have each state check that signal and behave appropriately. This method can
lead to a corner case for every state. Alternatively, use a small pulse-detection state machine (with a
handshake to the more complex state machine for clearing the signal) to handle the “watching” of the sig-
nal. This allows the complex state machine to look for the signal at only alimited number of states. Less
corner cases result in fewer test cycles, and lessrisk. See Figure 5 " State Machine Division" on page 6.

Figure5: State Machine Division

"One Large State Machine" Approach "Small Pulse-Detector State Machine" Approach

Designed to deal

with all random
stimulus, all states
in this SM will be
affected.

Pulsed
Stimulus
I

Designed to deal
with each operation
exactly the same way,
this state machine
is more predictable
and robust.

Level
Stimulus

o

Pulsed

Stimulus
I

Performance Consider ations

Some of the redesign examples appear to have a performance impact to the design. Creating a
smaller state machine to “shield” the more complex state machine from sources of Randomly Timed
Stimuli can add a clock of latency to those paths. However, for cases where a clock of latency would
impact the overall performance of the system, Mealy state machine design can be used. A Mealy state
machine is one which has a purely combinatorial path for the paths that are critical to performance. This
path would add an AND or OR gate to a combinatorial path, but not necessarily a clock of latency. Addi-
tionally, about half of the redesigns usually involve error cases. Thisis because error cases are common
sources of randomly timed stimuli. However, error handling should never affect the performance of the
system - unless the error happens frequently.

Methodsto Find Corner Case Bugs

Corner Case testing is traditionally performed by having the Verification team create an intelli-
gent test bench that can easily generate long sequences of legal stimulus. Verification languages like Vera
and Specman, as well as old fashioned task based Verilog using forks and joins have been very effective
in creating flexible, high level Bus Functional Models. These are created to crank out billions of clocks of
test vectors with very little effort from the test writer. In the past it was easier to alow the simulation
machine to work at getting into the corner cases of the design.

However, the ever increasing size of today’s ASIC designs [2]; coupled with the fact that HDL
simulation speed bogs down at large design sizes [3]; the ssimulation speed (Clocks per Second) of large
chipsisslowing down. Add in the fact that some high level testbench languages require heavy PLI instru-
mentation of the design, which also slows down simulation speed, and it is becoming harder and harder to
rely on the machine doing our work for us.

Exhaustive Testing

Ideally we would like to exhaustively test al the combinations of timing between all the possible
types of Randomly Timed Stimuli. Thisis simply not possible with the designs of today. So we use meth-
ods to allow us to find as many bugs as possible within the time alotted. This audit shows which of the
Randomly Timed Stimuli interact simultaneously somewhere in the logic. Therefore, a Verification team
can start by trying to exhaustively test the timing between all Randomly Timed Stimulus that interact
with each other in the logic.

Random Testing

Random testing involves using pseudo-randomly generated test stimulus. This method gets much
of the corner case coverage very quickly. But some of the corners do not get exercised for way too many
cycles. Methods to force the random testing into the corners often seem more like an art than a science.
Good verification engineers are worth their weight in gold because they can see how the random testing
Isinteracting in the design and know just how to tweak the tests to find the corners. Some code coverage
tools are starting to provide ways to integrate code coverage information to the test environment. Unfor-
tunately, this requires an extremely advanced test bench - and test bench architects that understand these
complex tools and methods.

Multiple Simulation Environments

Using multiple simulation environments involves breaking up a design into smaller pieces.
Instead of one large simulation environment testing the entire chip, the chip is broken into severa very

large pieces and each piece is verified using its own environment. This lowers the size of the Design
Under Test (DUT), and therefore raises the simulation speed allowing more effective exhaustive and ran-
dom testing. But it significantly adds to the amount of work for the Verification team. Bus Functional
Models must be written and maintained to emulate the functionality of the other parts of the ASIC. Many
bugs found in the DUT are not real bugs at the ASIC level, but are only due to the way the BFMs are
stimulating it. Most importantly, since a chip level test environment is still required in addition to all the
sub-chip environments, verification tasks are often duplicated between the separate sub-chip simulation
environments and the chip-level simulation environment - thus wasting Verification resources. [4]

Code Coverage and Assertions

Code Coverage Analysis is a very effective way to find corners that have not been tested. It is
very cost effective if used correctly. [5] However, there are limitations. First, Code Coverage Analysis
tools, when enabled, slow down the simulation speed for those runs. Second, Code Coverage Analysis
will show parts of your design you did not cover in your regressions, but it will not show you everything.
At the very least, teams should use Code Coverage Analysis to make sure al state machine states have
been entered, and all state machine transitions have been traversed. But there are many Corner Cases
which involve more than just that level of coverage. An example would be a scenario where one state
machine is doing one thing while a second is doing another particular operation at the same clock. This
event will not be tracked by standard Code Coverage tools unless someone has inserted a custom cover-
age point for just that scenario. Third, many teams get bogged down with Code Coverage. It can become
avery difficult hurdleif the goals are not clearly stated and followed. There are always some lines or con-
ditions which are impossible to test - or not worth the effort to test. If the team is able to intelligently
decide which lines or conditions are not worth the effort and has a process to sign off certain coverage
points and archive the decisions, then the cost of doing code coverage analysis is kept in check. Usually
Code Inspection of those coverage points and the logic around them is used as an alternative.

Observable Coverage is another recent improvement that only enhances the power of Code Cov-
erage Analysis. [6] This process further refines the coverage feedback to show only coverage that actu-
ally causes visible changes at the periphery of the Device Under Test. However the price is an additional
slowdown of simulation when running with the coverage tracking tool enabled. This again reinforces the
need to reduce the random testing needed to verify a design. Code Coverage Analysis has another very
relevant attribute. It will often illustrate the purpose of this paper since designs that fail the audit will typ-
ically have very hard state machinesto fully cover.

Assertions and Custom Code Coverage flags are used to give the design and verification team
additional visibility where automatic Code Coverage instrumentation falls short. These can be very effec-
tive but also require effort to create.

Formal and Semi-Formal Tools

Semi-Formal tools are becoming available which claim to search out the corner casesin adesign
and find the bugs using aformal or semi-formal approach. Unfortunately these tools have significant lim-
itations. The primary limitation isalimit to how much logic they can work on at atime. They also require
rules at the interfaces to tell the tool what stimulus is required. Hopefully, some advances in the near
future will make these tools less effort and therefore more cost-effective. It would be nice if they had the
ability to: hierarchically partition a design as specified by the user to focus on a manageable design sub-
section, extract the interface rules automatically from the surrounding logic, and apply the formal rou-
tines on the smaller subsection to find the corner cases.

Conclusion

In this paper we have discussed the growing risk of corner case bugs and how they are caused by
the interaction of multiple sources of Randomly Timed Simuli interacting in the same logical structures.
We described how to design logic “up front” in away that reduces the effort to verify it for Corner Case
bugs. We described a Verification Audit that can be performed if you have intimate knowledge of the
design. We then described several methods to improve the score in the Verification Audit, and ultimately
reduce the risk of a corner case bug and reduce the amount of random testing needed.

While the Effort-Risk calculation provides a number which can be used to highlight problem
designs and even point to the areas of concern in a design; it is only based on general characteristics of
the design. When ared flag is raised by this audit, more detailed analysisisrequired. This analysis should
use the specifics of the design and its use in the system to determine the real risk and how best to deal
with that risk.

Appendix: Effort-Risk Equation

Our eguation is an attempt to measure two things at once: the effort to verify that the logic has no
corner case bugs; and the risk that a corner case bug gets through to silicon. To make such an audit cost-
effective, some simplifications were made.

Effort-Risk Calculation

To exhaustively test a control structure that is affected by 2 randomly timed operations, the test
bench must simulate those two randomly timed events as they pass across each other in time. Starting
with one occurring first in time, some dead time, then the second occurring. Then the two are simulated
again and again with the second coming one clock earlier, relative to the first, until the second operation
Is actually starting and compl eting before the first one starts. If the length of the longest random stimulus
isL4 clocks and the length of the shortest is L, clocks, we can determine the number of clocks needed to

exhaustively test al corner cases of the two randomly timed stimulus (the number of simulation runs
times the average number of clocks per run). It will require X simulation runswhere X = L. The number
of clocks of stimulus per run will vary between L, and L4 + L,. So the average number of clocks per run
will beY =L, + 0.55L,. The number of clocksto exhaustively test the interaction between these two ran-
domly timed operationsisZ = X * Y. Substituting for X and Y givesZ =L, * (L1 + 0.5*L,). If we sim-
plify the calculation by assuming all the randomly timed operations are about the same length and
normalizing themto asinglevalueof L wegetZ =L * 1.5L = 1.5L2. Addi ng athird random event of the
same length gives us 2.5L.3. Four random events gives 3.5L. This pattern fits the equation (R - 0.5)*LR

but we approximate it with (R - 1)*LR where R is the number of Randomly timed stimuli affecting that
control structure (see bullet #4 in “ Caveats and Future Research” below for a discussion of the approxi-
mation).

However, this paper is advocating methods to reduce risk to corner cases by methods other than
exhaustive testing, when exhaustive testing is impractical. To represent these improvements, and to
reduce the effort of the audit, we replace the L with 2 (see bullet #1 in “ Caveats and Future Research” for
this discussion). So the effort to verify a single control structure with R randomly timed stimuli, using

more optionsin addition to exhaustive simulation can be represented by the quantity (R - 1)* 2R,

Size of the control structure - whether measured in gate count, state count, line count, arc count,
or size of the binary decision diagram, will have a direct relationship to risk of corner case bugs because
a larger design will typically have more corner cases. In addition, the larger the control structure, the

more effort will be required to do code inspection and the more lines of code to be Code Covered. There-
fore, to represent risk and effort, each control structure has a size element multiplied to weight it.

To do this we determine relative sizes for each control structure. We normalize those size multi-
pliers so they will add to 1.0 for all the control logic in the design. So if a control structure is 1/10th of the
size of al the control structures (including those only affected by only one randomly timed stimulus), the
sizemultiplier for that element (Sy) would be 0.1.

So the effort to exhaustively test AND/OR use alternative approaches to verify - and the risk of
corner case bugs getting past the verification of the design is roughly proportional to Sy*(Ry - 1)* 2RN for

each control structure. The cumulative effort for the whole design can be estimated by adding together all
these quantities using the equation:
Effort-Risk ~= S;*(Ry- 1)*2R+ ... + S*(Ry - 1)*2™N

Caveats and Future Research

In any attempt to quantify an assessment with a real number, there is arisk of placing too much
importance on the number generated. It is more important to ook at how the design attributes are affect-
ing each component of risk and look for ways to improve the result with design modifications. At this
point we have not performed a study to evaluate the relative size of the Effort-Risk number to bugs found
in chips after the verification phase. We have not compared the Effort-Risk number to random testing on
previously shipped chips. This would be a great opportunity for future research. The equation seems to
roughly indicate the amount of risk we have witnhessed in previous projects. But the simplifications we
used in generating the equation should be discussed.

* Theone simplification which has a major impact to the result was removing the requirement to deter-
mine the length of each randomly timed stimulus and replacing it with the number 2. For cases where
some of the stimuli are very long, this may be an oversimplification that could hide some real issues.
But more importantly, this simplification dramatically reduces the impact of control structures with a
high number of randomly timed stimuli (say 4 or more). But remember we started with the equation
to calculate the number of clocks to exhaustively test a control structure. However, this paper advo-
cates use of many other techniques where exhaustive testing isimpractical. If we wanted a number to
reflect the effort of exhaustive testing, L would be more appropriate. To illustrate this point, a single
state machine that is only 1/20th of the control logic, affected by 4 randomly timed stimuli - each with

alength of 40 clocks, would contribute avalue of (1/20) * (4-1) * 40* = 384,000 usi ng an exhaustive
calculation. However using 2 for the length (to account for additional tools used to verify against the
corner cases that the randomly timed stimulus cause) gives that control structure a Effort-Risk value

of (1/20) * (4 - 1) * 2* = 2.4. Depending on the effectiveness of your additional tools, you may want
to use a number larger than 2. If you are not using any additional tools to help reduce the risk of cor-
ner case bugs, L may be a more appropriate base number.

* Inthe calculation of the size multiplier, we normalized to a total size of 1.0 for al the control logic.
This means a very large chip design will tend to have an Effort-Risk value about the same as a very
small design - except for the fact that larger designs tend to have more interfaces, and hence more
sources of randomly timed stimulus. For this reason this audit will not calculate the number of man-
months of effort do verify the corner casesin a design. Perhaps a total design size multiplier could be
used for this purpose - suggesting another areafor future research.

» The Effort and Risk components could be broken out and calculated separately. We decided not to do
that for smplicity and cost-benefit reasons.

* The(Ry - 1) multiplier in the calculation of each logical structure was an approximation of (Ry - 0.5).

The multiplier (R - 1) made more sense when for the cases when only one randomly timed event is
affecting a piece of logic. No random testing is required because the risk to corner case bugs should

be 0. Random testing is only needed when 2 or more randomly timed events interact in the logic.
Using (Ry - 1) zeroed out the component of any design element with only one randomly timed stimu-

lus. Purists are free to use (R - 0.5), and just not include any control structures with less than two ran-
domly timed stimulus. The difference to the total will be very small.

Acknowledgements

The authors would like to acknowledge the ASIC and FPGA Design and Verification teams of the
Hewlett Packard Non-Stop Enterprise Division. The integration of the design and verification processes
in the architecture of designs has led to very successful ASIC and FPGA implementations. This integra-
tion, specifically the iteration between the architecture of the designs, and input from the verification
teams, was the inspiration for this paper.

References

1. “Newbridge Networks Adopts a Top-Down Verification Strategy” by Dan Schumacher; http://
www.eedesign.com/editorial/1998/topdown9806.html

2. “Design Methodologiesfor DSM ASIC designs’ by Ravi Thummarukudy; http://www.eedesign.com/
editorial/1999/designmethod9903.html

3. “High Level Verification Language tools throttle performance of simulations when linked with RTL
simulators through PLI.” by Tom West (twest@broadcom.com); http://janick.bergeron.com/guild/3-
15.html

4. “Nutsand Bolts of Core and SoC Verification” by Ken Albin; http://www.sigda.org/Archives/Pro-
ceedingArchives/Dac/Dac2001/papers2001/dac0l/pdffiles/16_2.pdf

5. “Verification of Configurable Processor Cores’; by Marin"es PuigMedina, G ulbin Ezer, and Pavlos
Konas; http://jamai ca.ee.pitt.edu/Archives/ProceedingArchives/Dac/Dac2000/papers/2000/dac00/
pdffiles/24_2.pdf

6. “Code coverage techniques -- a hands-on view”; by Alain Raynaud; http://www.eedesign.com/fea-
tures/exclusive/OEG20020912S0059

	AUDIT YOUR DESIGN TO DETERMINE AND EVEN REDUCE THE AMOUNT OF RANDOM TESTING NEEDED
	Abstract
	Introduction
	Randomly Timed Stimuli
	Designing for Minimal Random Testing
	Verification Audit
	Design Overview.
	Design Analysis.
	Table/Equation Analysis.

	Methods to Redesign Logic
	Single Point Arbitration
	Isolate Aborts or Errors to Where They Occur
	Logical Firewalls
	State Machine Division

	Performance Considerations
	Methods to Find Corner Case Bugs
	Exhaustive Testing
	Random Testing
	Multiple Simulation Environments
	Code Coverage and Assertions
	Formal and Semi-Formal Tools

	Conclusion
	Appendix: Effort-Risk Equation
	Effort-Risk Calculation
	Caveats and Future Research

	Acknowledgements
	References

