
HDLCon 2001 Tutorial 6

A Practical Approach to System Verification and
Hardware Design

The PUBLIC SUBSET Of The SUPERLOG Language

Peter Flake, Chief Technical Officer
David Rich, AE Director

This material is copyrighted; all rights are reserved by Co-Design Automation Inc. This document may not, in whole or in part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or machine readable form without the prior consent of Co-Design Automation Inc.

The software programs described herein are copyrighted and all rights are reserved by Co-Design Automation Inc. The programs may not be copied or
duplicated except as expressly permitted in the Software License Agreement.

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG Subset Tutorial Overview

Welcome to the SUPERLOG Public Subset Tutorial

The purpose of this tutorial is to demonstrate the nature of the
SUPERLOG language, and some of the base capabilities
contained therein.

It should be noted that the SUPERLOG language contains
many additional capability THAT ARE NOT described in this
document, particularly in the area of abstract system modeling
and verification. For more information please contact:

Co-Design Automation, Inc. 1 877 6 CODESIGN
www.co-design.com info@co-design.com

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Co-Design Automation, Inc.

1997
Founded by

industry
leading
experts

May 1999
SUPERLOG
announced

May 2000
SYSTEMSIM
SYSTEMEX

Release

Nov 1999
12 companies

endorse
SUPERLOG

Company Goal
 Provide an order of magnitude

productivity improvement across design
and verification methodologies

Jan 2001
Leading

companies
announce

CDA enabled
methodologies

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

The Co-Design Team

• Simon Davidmann - CEO
– Formerly VP and European GM

Chronologic (VCS, now Synopsys),
Ambit (BuildGates, now Cadence),
Virtual Chips (now Pheonix)

• Peter Flake - CTO
– Formerly HILO team leader, HDL

visionary
• Phil Moorby – Chief Scientist

– First Cadence fellow and architect of
Verilog, Verilog-XL

• Dave Kelf - VP Marketing
– Formerly Dir Mkt Cadence

simulation product line

• Professor Don Thomas
– Carnegie Mellon University

• Andy Bechtolsheim
– Co-founder Sun Micro., VP Cisco

• Venk Shukla
– Initiator of OVI, CEO EveryPath.com

• Rajeev Madhavan
– Founder LogicVision, Ambit, Magma

• Raj Singh (Board Member)
– Founder of Fiberlane, Cerent, Siara

• Raj Parekh
– Former CTO Sun Microsystems, SGI

• Rich Davenport (Board Member)
– former President & COO Summit Design

Management Advisors

+14 of the top simulation &
language experts worldwide

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Focusing On Key Methodology Problems

• Verification environment speed and complexity
• Hardware complexity and design flow performance
• System & SW evaluation speed and implementation links

IP
Hardware

Design

IP
Design

Verification

IP
Software
Design

System Specification

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Streamlined Methodology Components

B
eh

av
io

ra
l

St
ru

ct
ur

al
Im

pl
em

en
ta

tio
n

Architecture
SUPERLOG
25-100X RTL

Successive
Refinement

V
er

ifi
ca

tio
n

SU
PE

R
L

O
G

 A
dv

an
ce

d
C

ap
ab

ili
ty

SW
/A

lg
o/

IP
/V

er
ifi

ca
tio

n
C

/C
++

Synthesis

SYSTEMEX

Abstract Structure
SUPERLOG

3X3 RTL
SY

ST
EM

SI
M

• System Design
– Design reuse
– Implementation links

• Hardware Design
– Raising abstraction
– Concise, error free

• Verification
– Streamlined adoption
– From Verilog / C
– From existing tools

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG - Targeting Design Productivity

• Superset of Verilog (and Verilog2K), with the addition of
C programming, system and verification capabilities

• Targeting the SoC specializations
– architecture, hardware, verification, with links to C

• Designed for USEability
– Unifying the SoC design flow
– Dramatically increasing design Speed
– Providing an Evolutionary path

Elevating Design, Accelerating Verification

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG -Building on Verilog 1

ANSI C style ports
generate
localparam
const func

Standard File I/O
$value$plusargs
`ifndef `elsif `line
@*

(* attributes *)
configurations
part selected memorys
variable part select

Multi D arrays
signed unsigned
automatic
initialization
**(power)

V
erilog 2000

initial
disable
events
wait # @

$finish $fopen $fclose
$display $write $monitor
`define `ifdef `else
`include `timescale

modules
parameters
function/tasks
always @
assign
fork join

wire reg
integer real
time
packed arrays
2D memory

begin end
while
for forever
if else
repeat
+ = * / %
>> <<

gate/switch level primitives
min/typ/max rise/fall pin-to-pin delays

V
erilog 1995

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG -Building on Verilog 2

C

int shortint
longint

shortreal double
char void
enum typedef
ref deref null
struct union
casting
const

do while
break

continue
return goto
++ -- += -= *=
/= >>= <<=
&= |= ^= %=
varargs
globals
externals

ANSI C style ports
generate
localparam
const func

Standard File I/O
$value$plusargs
`ifndef `elsif `line
@*

(* attributes *)
configurations
part selected memorys
variable part select

Multi D arrays
signed unsigned
automatic
initialization
**(power)

V
erilog 2000

initial
disable
events
wait # @

$finish $fopen $fclose
$display $write $monitor
`define `ifdef `else
`include `timescale

modules
parameters
function/tasks
always @
assign
fork join

wire reg
integer real
time
packed arrays
2D memory

begin end
while
for forever
if else
repeat
+ = * / %
>> <<

gate/switch level primitives
min/typ/max rise/fall pin-to-pin delays

V
erilog 1995

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG -Building on Verilog 3

C

int shortint
longint

shortreal double
char void
enum typedef
ref deref null
struct union
casting
const

do while
break

continue
return goto
++ -- += -= *=
/= >>= <<=
&= |= ^= %=
varargs
globals
externals

ANSI C style ports
generate
localparam
const func

Standard File I/O
$value$plusargs
`ifndef `elsif `line
@*

(* attributes *)
configurations
part selected memorys
variable part select

Multi D arrays
signed unsigned
automatic
initialization
**(power)

V
erilog 2000

initial
disable
events
wait # @

$finish $fopen $fclose
$display $write $monitor
`define `ifdef `else
`include `timescale

modules
parameters
function/tasks
always @
assign
fork join

wire reg
integer real
time
packed arrays
2D memory

begin end
while
for forever
if else
repeat
+ = * / %
>> <<

gate/switch level primitives
min/typ/max rise/fall pin-to-pin delays

V
erilog 1995

SU
PE

R
L

O
G

Process
Queues
String Types
Dynamic Types
2/4 State Variables
Semaphores
Liveness
System Data

User Defined Ports
State Machines
Communication

Interfaces
Templates
Packed Arrays/Struct
Timeunits
Sparse/Associative

Arrays

Self-Introspection
Safe Memory

Management
Temporal Procedures
Assertions
Protocol Checks
Coverage Checks
Block Labeling
Conditional Events

Additional Verification / System Features

Items in BOLD discussed in Tutorial

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG Enhances The Design Flow

Pipeline/
Datapath

Complex
Control

Concise
Descriptions

Standard
HW

always @eventstr
 if (str == parent ->s)
endfunction

always @eventstr
 if (str == parent ->s)
endfunction

Algorithm Model
Optimized HW Flow

ISS
Model

Comms.
Orientation

Platform
Design Flow

IP

Efficient Design Across
Methodology Boundaries

C/Verilog
Code Mix

Interfaces C Import
Export

Reuse
Features

Advanced
FSMs

Processes
Queues

Verilog2K
C abstracts

Verilog
Base

Abstract
Refine

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG Accelerating Verification

Interfaces

Processes, re-entrant tasks,
test-generation

Programming Capabilities

Verilog
C

Protocol Checks Queues

Coverage Tests

O
ld

 V
er

ilo
g/

C
 T

es
ts

O
ld

 V
er

ilo
g/

C
 T

es
ts

D
ir

ec
te

d
T

ra
ns

ac
tio

n
B

lo
ck

s
D

ir
ec

te
d

T
ra

ns
ac

tio
n

B
lo

ck
s

Se
qu

en
ci

ng
Se

qu
en

ci
ng

BF
M

 C
on

ve
rs

io
n

BF
M

 C
on

ve
rs

io
n

E
ve

nt
 C

he
ck

s
E

ve
nt

 C
he

ck
s

Tr
an

sa
ct

io
n

A
ss

er
tio

ns
Tr

an
sa

ct
io

n
A

ss
er

tio
ns

Q
ua

lit
y

C
he

ck
s

Q
ua

lit
y

C
he

ck
s

D
at

a
T

ag
gi

ng
/M

on
ito

ri
ng

D
at

a
T

ag
gi

ng
/M

on
ito

ri
ng

Design
Under
Test

Reference
Model

SUPERLOG and SYSTEMSIM
Contain Required Verification Power

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG Enabling Platform Infrastructure

Embedded
ISS

RTOS

Application
SW

Standard Part

Standard
IP

Custom
IP

Custom
IP

System Platform

V
er

ifi
ca

tio
n

D
ri

ve
rs

Verification Automated For IP

Embedded models
with software

debug

Inter-block Communication

Multi-lingual IP
from different

sources

Communication, Verification, Reuse
SUPERLOG Provides Transparent Infrastructure

Platform Based Design Offers Possibilities

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG Abstraction Driving Performance

Dhrystone Benchmarks On Various
Code Styles and Simulators
SUPERLOG Benchmark Comparison

0 10 20 30 40 50 60 70 80

C

SYSTEMSIM/Behav
SUPERLOG

SYSTEMSIM/Struct**
SUPERLOG

Compiled Sim/Verilog

Interpreted Sim/Verilog

Si
m

ul
at

or
/L

an
gu

ag
e

Time (secs)

SUPERLOG Opportunity
Dramatic performance

improvement
- RTL Coding

- Abstract Coding
- Integrated Verification

- Seamless C usage

SUPERLOG enables performance abstraction trade-off choice

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG - Evolution, Not Revolution!

Easy design integration

C/HDL IP

Legacy HDL

Old Verif. Code

Easy adoption

Accelerated
Learning Curve

Easily Added To
Design Flow

Familiar Use Model

IP
Hardware

Design

IP
Design

Verification

IP
Software
Design

System Specification

SUPERLOG = Verilog +++
Easy to take existing Verilog designs

and leverage SUPERLOG where required

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Progress Towards Publication

SUPERLOG Publication Stages

Verilog95 Verilog
2000

C
Programming

Features

Complex
Structures
(Queues,
Processes

etc.)

Verilog
Additions

System
Features

(Interfaces,
Control,

etc.)

Verification
Features
(Asserts,

Coverage,
etc)

C
Interoperability

• Large group of experts helping drive language completion
– Forum and other organizations actively involved

• Phased approach to publication,as sections are completed
– Good progress to date

• SUPERLOG Extended Synthesis Subset offered to Accellera

HDLCon
Tutorial

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

PLI RTL Impl.Debug SimulationAlgo. Model Tests

Order Of Magnitude Productivity Enhancements

• Concise RTL implementation
• PLI elimination
• Simulation speed acceleration

• Integrated algorithm modeling
• Efficient testbench creation
• Rapid debug

Direct Performance Overall Productivity

Practical Productivity

Time Saved

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Language Evolution

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Learning SUPERLOG Is Easy

module shifter (
 input logic clk,
 input logic [7:0] data_in,
 output logic [7:0] data_out,
 input logic load,
 input logic shift_left);

always @(posedge clk)
 if (load) data_out <= data_in;
 else
 if (shift_left)
 data_out <= {data_out[6:0], 1'b0};
endmodule

ANSI C Style

headermodule

always
block

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Module Header Syntax Enhancements

module modname (
 input bit clk,
 input logic rst,
 output logic [7:0] data,
 input event start,
 inout byte bus1, bus2);

endmodule

input <datatype> <name>,

•ANSI C Style (Verilog 2000)

•Module Ports only need to be
defined once

•Can use all datatypes as ports,
e.g. events

output

several ports of same

type

comma separation
no semicolon

comma separation
no semicolon

• More concise format

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Module Port Default Modes

module modx (
 input logic clk,
 input logic rst,
 input logic sel_bus,
 input bit ctrl,
 input logic [31:0] a,
 input logic [31:0] b,
 input logic [31:0] c,
 input logic [31:0] d,
 input logic [3:0] sel,
 input logic [7:0] addr,
 output logic err,
 output logic [31:0] out,
 inout logic [7:0] bus1,
 inout logic [7:0] bus2);

module modx (
 input logic clk, rst, sel_bus,
 bit ctrl,
 logic [31:0] a,b,c,d,
 logic [3:0] sel,
 logic [7:0] addr,
 output logic err,
 logic [31:0] out,
 inout logic [7:0] bus1, bus2);

these work
the same

Tasks/function headers
work the same way

Tasks/function headers
work the same way

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Port Comparison With Verilog 1995

module mod (clk, rst,
 a,b,c,d,
 st_out, er, ok);

input clk;
input rst;
input a,b,c,d;
output [7:0] st_out;
output [1:0] er;
output ok;

reg [7:0] st_out;
reg [1:0] er;
reg ok;

module mod (
 input wire clk, rst, a,b,c,d,
 output logic [7:0] st_out,
 output logic [1:0] er,
 output logic ok);

• No duplication of information necessary

Old Verilog
Style

SUPERLOG
Style

Default direction is 'input'
Default type is 'wire' for modules
and 'logic' for tasks and functions

Default direction is 'input'
Default type is 'wire' for modules
and 'logic' for tasks and functions

OK to use
either style
OK to use
either style

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Explicit Hierarchy

myTop topInst;

module myTop;

 module sub1_local;
 ...
 endmodule

sub1_local I1 (...);
sub2_global I2 (...);
endmodule

module sub2_global;
...
wire w;
endmodule

module dummy(…);
…
endmodule

Nested
module

declaration

Activation topInst

I1 I2

•Nested modules make
naming much easier

•$root for the global level

•Activation script at global
level

•Top level module can be
instanced

$monitor($root.topInst.I2.w);

Nested

identifier

with $root

sub1_local

sub2_global

myTop

declarations instantiations

Ignored

dummy

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Implicit Hierarchy

myTop

I1 I2

sub1_local

sub2_global

myTop

declarations instantiations

dummy

dummy

• Uninstanced modules become top level
instances

• Same as Verilog

• May lead to unwanted modules in
simulation

module myTop;

 module sub1_local;
 ...
 endmodule

sub1_local I1 (...);
sub2_global I2 (...);
endmodule

module sub2_global;
...
wire w;
endmodule

module dummy(…);
…
endmodule

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Constants
Parameters

Macros
Timescales

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Using Literals

logic [31:0] a;
...
a = 32'hf0ab;

This works like
in Verilog

• Convenient way to fill up a vector with a bit constant

a = 'z;
b = '0;

This fills the packed
array with the same

value

logic [31:0] a;
...
a = 32'hffffffff;
a = '1;

These are
equivalent

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

`define MAX 7
`define print(var) $display("The value of var is %d", var)

...

int a[`MAX:0];
int i;

...

`print(i);

Parameterizable Text Macros

parameterizablemacros

• Powerful facility to write concise code

like in Verilog

`define macro(arg1, arg2, arg3) ...

no space between
macro and

open bracket

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Define Example With Text

`define print(y) $display("var %s equals %d ", `”y`”, y)
...
int num;
`print(num);

more readable
to leave the ; on
the calling line

Define is tokenized
so y does not

match y in display

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Constants

• Use like defines or parameters
• No redefining or overriding (within scope)

const bit FALSE = 0;
const bit TRUE = 1;

module top;

const real pi = 3.1415926535;
const int TRUE = -1;

initial $display("pi=%f", pi);

endmodule

global constant

local constant

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Parameters

module top;

logic clk;

clockgen #(.start_value(1'b0), .delay(50)) c (clk);

always @clk $display("t=%t clk=%b", $time, clk);

initial
 begin
 repeat(10) @(posedge clk) ;
 $finish(0);
 end
endmodule

module clockgen(output ctype clk);
 parameter logic start_value=0;
 parameter time delay=100;
 parameter type ctype=bit;

initial clk <= start_value;

always #delay clk <= !clk;

endmodule

override

parameter

parameters have type

• Parameters can be passed by name

parameters used
before definition.

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Time Constants

#10 a <= 1;
#5ns b <= !b;
#1fs $display("%b", b);

you can use
#delays with

no units, like
in Verilog

you can also

specify units

with your delays •legal time units are s, ms, us, ns, ps, fs

•The default is #1 = 1s

No space between
digit and letter!

No space between
digit and letter!

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Timescale Rules

`timescale 1ns/1fs

#1 is 1 ns
smallest

timestep is 1fs

•Removes file order dependency
•Default is timeunit 1s; timeprecision 1s;

timeunit 1ns;
timeprecision 1fs;
top t;
module top;

`timescale is also
supported for

backwards
compatibility

`timescale is also
supported for

backwards
compatibility

separate
timeunit and
timeprecision

commands

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Timeunit Example

timeunit 1ns;

top t;

module top;
timeunit 1ms;

sub s;

initial
 begin
 #1ns $display("top t=%t %f", $time, $realtime);
 #1fs $display("top t=%t %f", $time, $realtime);
 end
endmodule
module sub;
 initial
 begin
 #1 $display("sub t=%t %f", $time, $realtime);
 #1fs $display("sub t=%t %f", $time, $realtime);
 #1000 $finish(0);
 end
endmodule

timeunit for sub is 1ns,
regardless of order of

modules

timeunit and
timeprecision must be
either at the global level
or right at the start of a

module

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Timescale Rules for Mixed Styles

•if SUPERLOG and Verilog timescales are mixed and there are one or
more 'timescales in Verilog, the precision of the whole simulation is the
smallest p in Verilog or SUPERLOG

timeunit 1ns;
timeprecision 1ns;

`timescale 10ps/10ps

SUPERLOG

Verilog

Verilog

`timescale 10ns/1ps

simulator timestep
= 1ps

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Datatype System

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Type and Variable System

• SUPERLOG is 100% backward compatible with
Verilog 1995 and Verilog 2000

• It inherits the variable and type system from C
• Plus, it has additional types that are useful for system

design and verification that go beyond C and Verilog

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Variable Types – Static vs. Automatic

• Static variables
– Allocated and initialized at time 0
– Exist for the entire simulation

• Automatic variables allow recursive tasks and
functions
– Optional type for variables inside a block, task or function
– Reallocated and initialized each time entering a block
– May not be used to trigger an event

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Variable Types – Global Vs. Local

• Global variables
– Accessible from any scope
– Must be static
– Tasks and functions can be global too

• Local variables
– Accessible at the scope where they are defined and below
– Default to static, can made automatic
– Static variables are accessible from outside the scope with

a hierarchical pathname

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Scope and Lifetime of Variables

top inst;

int max = 10;
int n;
module top;
 int n;
 initial begin
 automatic int i;
 n = 1;
 for (i=2; i<=max; i++)
 n *= i;
 end
initial begin : myblock
 n = 1;
 for (int i=2; i<=max; i++)
 n *= i;
 $root.n = n;
 end
endmodule

data declared inside of a
module is static and

available to all tasks and
functions in that modulei is automatic and

local to that block

data declared
outside of modules
is static and global

global n local n

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Static and Automatic Variables in Tasks

task automatic triple (input int n);
int result;
static int total;

 begin
 total = total + 1;
 result = 3 * n;
 $display("result=%d.",result);
 $display("Task called %0d times.",
 total);
 end
endtask

task triple (input int n);
automatic int result;
int total;

 begin
 total = total + 1;
 result = 3 * n;
 $display("result=%d.",result);
 $display("Task called %0d times.",
 total);
 end
endtask

automaticvariable

static
variable

Multiple calls of
the same task
in parallel all

access the same
static variables

Multiple calls of
the same task
in parallel all

access the same
static variables

Default: all local
variables are static
(Verilog backwards

compatible)

Use automatic
tasks to make all
local variables

automatic, unless
specified as static

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG Has the Basic C Datatypes

• Compatible to C

• Use typedef to get C compatibility

char c; // 8 bit signed integer
int i; // 32 bit signed integer

// Superlog C
typedef shortint short;
typedef longint longlong;
typedef real double;
typedef shortreal float;

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Basic SUPERLOG Datatypes

bit b; // single bit 0 or 1
logic w; // 4-valued logic, x 0 1 or z as in Verilog
time t; // 64 bit time value
byte b8; // 8 bit signed integer

ExtraSUPERLOGdatatypesArrays of logic and bit
default to unsigned

Arrays of logic and bit
default to unsigned

•Make up your own types with typedef

•Define arrays of bits and logic

• Flexibility

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG Has 2 and 4 State Datatypes

reg a;
integer i;

Verilog reg and integer
type bits can contain x

and z values

If you don't need the x and z values then
use the SUPERLOG bit and int types

which make execution much faster and
uses only half the memory

If you don't need the x and z values then
use the SUPERLOG bit and int types

which make execution much faster and
uses only half the memory

•Verilog

logic a;
logic signed [31:0] i;

bit a;
int i;

•SUPERLOG

•SUPERLOG

Equivalent to these 4
valued SUPERLOG

types

These SUPERLOG types
have two valued bits

(0 and 1)

•SUPERLOG

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Data Types and Ports

• Verilog has 2 basic connection types
– Nets

• Represents a connection of one or more data drivers to a
destination

• Does not store data, just transfers it
• Is the only type that goes through a port

– Registers
• Represents a place to store a value, a variable
• Although a reg can be on either side a port, it is converted to a wire

before going through it

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Verilog Module Ports Rules

• Expressions may contain compatible types
• When connected to a SUPERLOG module, reg may

be replaced with logic or bit

Module definition

Module instance
i
n
p
u
t

o
u
t
p
u
t

expr/reg/wire

reg/wirewire

wire

i
n
o
u
t

wire

wire

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Connecting Module Ports – Verilog Style

• Verilog wire vs. reg rules
• wires resolve all drivers
• A.r and B.r are separate

module topmodule;
wire w;

subA A(w);
subB B(w);

endmodule

module subA(output reg r)
initial fork

 #00 r = ’0;
 #11 r = ’z;
 #19 r = ’0;
join

endmodule
module subB(output reg r)
initial fork

 #00 r = ’z;
 #10 r = ’1;
 #20 r = ’z;
join

endmodule

submodule A submodule B

reg reg

wire

topmodule

0 10 11 19 20

like a
Verilog

continous
assign

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

The SUPERLOG Type

• Works as either a register or a simple net
• Can be any SUPERLOG datatype
typedef struct {

real R;
real I;} Complex;

Complex X,Y,Z;
always @(negedge clk)

begin
X = Complex_F1(Z);
Y = Complex_F1(Z);

end
always @(posedge clk)

X = Complex_F1(Y);

assign Z = Complex_F1(X);

One or more procedural
assignments to X,Y

Single continuous
assignment to Z

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG Module Ports Rules

• A variable of any SUPERLOG type can pass through
a port

• If the types are the same, the variable is shared
• If not, a continuous assignment is made

Module definition

Module instance
i
n
p
u
t

o
u
t
p
u
t

Stype

StypeStype

Stype

i
n
o
u
t

Stype

Stype

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

No bus
contention

Connecting Module Ports - SUPERLOG

• Connected by sharing
• A.r, B.r, and w are collapsed into

one variable

module topmodule;
logic w;

subA A(w);
subB B(w);

endmodule

module subA(output logic r)
initial fork

 #00 r = ’0;
 #19 r = ’0;
join

endmodule
module subB(output logic r)
initial fork

 #10 r = ’1;
join

endmodule

submodule A submodule B

logic logic

logic

topmodule

0 10 19

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Signed Data

• Affects padding of operands in expressions
– Unsigned – zero extended
– Signed – sign bit extended
– Affects Compare, shift, arithmetic

• Sign of lhs assignment does not effect rhs
• Defaults

– All bit-level types and time are unsigned

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Signed Data

int signed sint;
int unsigned uint;

logic signed [7:0] slogic;
logic unsigned [7:0] ulogic;

sint = -6; // fffffffa
uint = -6; // fffffffa
slogic = 4’hf; // 0f unsigned constant
ulogic = 4’shf;// ff signed constant

(sint + ulogic) is 1000000f9

(sint < slogic) is true
(uint < slogic) is false

data
declaration

with 'signed'
or 'unsigned'

prefix format

with 's' for

signed literals

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Casts and Typedefs

typedef logic [31:0] address_bus_type;

address_bus_type address_bus;
...
address_bus = address_bus_type'(i);

int i;
real f = 3.1515;

...

i = int'(f * 0.5);

type cast

complex type casts are
possible but need a typedef

complex type casts are
possible but need a typedef

cast i as type

address_bus_type

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Declaration and Initialization

int index = 1;

one-line declaration and
initialization does not

generate an event

wire w = a & b;
Wire can be declared

and continously assigned
in one line

int index;
initial index = 1;

This generates an event
at time 0

wire w;
assign w = a & b;

Same thing in 2 lines

From
Verilog
From

Verilog

From CFrom C

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Arrays
Structures

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Packed and Unpacked Arrays

• Unpacked
– Can be any datatype
– Access only one element at a time

• Whole arrays can be copied

– Uses a range: int Mem[1023:0]
– C uses size: int Mem[1024]

• Packed
– All bit-level types: reg, wire, logic, bit
– Access whole array or slice as a vector

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Packed and Unpacked Arrays

bit a [3:0];unpacked
array of

bits

Don’t get them mixed upDon’t get them mixed up

a0

a1

a2

a3
unused

bit [3:0] p;
packed
array of

bits
p0p1p2p3

bit [15:0] memory [1023:0];
memory[i] = ~memory[i];
memory[i][15:8] = 0;

1k 16 bit
memory

Packed indexes
can be sliced

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Multidimensional Arrays

int a[7:0][7:0];
...
a[x][y] = 0;

2D array arbitrary
dimensions

possible

arbitrary
dimensions

possible

•Complex data structures are easily defined

bit ucube [maxx:0][maxy:0][maxz:0];
bit [maxz:0] pcube[maxx:0][maxy:0];

ucube[x][y][z] = 5;
pcube[x][y] = 0;
pcube[x][y][1:0] = '1;
pcube[x][y][2:0]++;

3D array

Unpacked indexes
must be specified

Last packed index
may be a part select

Packed
dimension varies

more rapidly

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Array Literals

int A[2:0] = {0,1,2};
int nines[1:9] = {9{9}};

A = {3,4,5};

real R[1:0][1:0]
 = {{1.5,4.5},{5.0,0.5}};

byte Frame[WIDTH:1][HEIGHT:1]
 = {WIDTH{{HEIGHT{8’hA5}}}};

like
concatenationInitialization

Assignment

Braces reflect
array layout

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Array Initialization

typedef bit [24:0] mydata_t;

mydata_t [0:3] data_pack = {
25'd2,25'd4,25'd78,25'd27};

mydata_t data_dense[0:3] = {
2,4,78,27};

{}=concatenation

Careful! Array
initialization with {} means
different things for packed

and unpacked arrays

Careful! Array
initialization with {} means
different things for packed

and unpacked arrays

{}=array element
initialization

Packed
array

unpacked
array

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Strings

•Strings are an extension to both Verilog and C

string s1, s2;

s1 = "";

s2 = "ab";

s1 = {s1, s2};

$display("s1=%s, s2=%s", s1, s2);

if (s1 == s2) …

null string

concatenation

copy string literal

display

The string data type is a variable size
packed array of characters, indexed
from 0 to $, with the special property
that an element of the array is also
of type string

The string data type is a variable size
packed array of characters, indexed
from 0 to $, with the special property
that an element of the array is also
of type string

The format string
of $display must

be a literal

The format string
of $display must

be a literal

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Enumerated Data Types

typedef enum {bashful, doc, dopey, grumpy,
 happy, sleepy, sneezy} dwarf_type;
dwarf_type dwarf;

enum {yes, no=0, maybe} choice;

dwarf = dopey;
choice = maybe;
$display("dwarf=%s choice=%s", dwarf, choice);
$display("dwarf=%d choice=%d", dwarf, choice);

dwarf=dopey choice=maybe
dwarf= 2 choice= 2

User defined

encoding

Typedef

can print

enums as text

or as number

dwarf=dwarf_type'(2);
dwarf=dwarf_type'(no);
myint=int'(happy);

Must use cast

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Unique enum Elements

begin: en1
 enum { street, alley, square } roads_e;
end
begin: en2
 enum { rectangle, square, triangle }
geometric_e;
end

en1.roads_e = square;
en2.geometric_e = square;

typedef enum {
 r_street, r_alley, r_square
 } roads_e;
typedef enum {
 g_rectangle, g_square, g_triangle
 } geometric_e;

Enum elements must be
unique to the current scope
Enum elements must be

unique to the current scope

If ambiguous elements are
required, put the enums

into separate scopes
(blocks, modules, or

interfaces)

If ambiguous elements are
required, put the enums

into separate scopes
(blocks, modules, or

interfaces)

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Structures

typedef struct {
real F0, F1;
int I0, I1;
Instruction IR;
} reg_bank;

structure
Like in C but without
the optional structure

tags before the {

Like in C but without
the optional structure

tags before the {

• Flexible datatypes, compact

type reg_bank is
record
 F0, F1 : Real;
 I0, I1 : Integer;
 IR: Instruction;
end record;

VHDL
Record

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

More Structures

typedef struct {
byte R,G,B;
} RGB;

const RGB BLUE = {0,0,255};

RGB Frame[640:0][480:0];

Frame[x][y] = BLUE;

module Xform(input RGB pixin,
 output RGB pixout);
endmodule

constant

array of struct

struct copy

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Unions

typedef union {
 int n;
 real f;
 } u_type;

u_type u;

initial
 begin
 u.n = 27;
 $display("n=%d", u.n);
 u.f = 3.1415;
 $display("f=%f",u.f);
 $finish(0);
 end

int

again, like in Cagain, like in C

union

real

provide storage foreither 'int' or 'real'
•structs and unions can be
assigned as a whole

•Can be passed through
tasks/functions/ports as a whole

•can contain fixed size packed or
unpacked arrays

•pointers

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Struct and Union Example

typedef struct {
 bit is_real;
 union { int i; real f;} n;
} number_type;

number_type num;

initial
 begin
 assign_real(num, -3.1415);
 printnum(num);

 assign_int(num, 1024);
 printnum(num);

 $finish(0);
 end

task printnum(input number_type num);
 if (num.is_real)
 $display("num=%f (real)", num.n.f);
 else
 $display("num=%d (int)", num.n.i);
endtask

task assign_real(output number_type num,
 input real f);
 begin
 num.is_real = 1;
 num.n.f = f;
 end
endtask

task assign_int(output number_type num,
 input int i);
 begin
 num.is_real = 0;
 num.n.i = i;
 end
endtask

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

task assignnum(output number_type num, input dynamic d);
if (d.$type == int || d.$type == real)
 begin
 num.data = d;
 num.is_valid = 1;
 end
else
 num.is_valid = 0;
endtask

task printnum(input number_type num);
if (num.is_valid)
 case (num.data.$type)
 real: $display("num=%f (real)", real'(num.data));
 int: $display("num=%d (int)", int'(num.data));
 endcase
else
 $display("data is not valid");
endtask

Dynamic Types

Task call be called
with different

argument types

Task call be called
with different

argument types

Must cast

typedef struct {
 bit is_valid;
 dynamic data;
} number_type;

number_type num;

initial
 begin
 assignnum(num, -3.1415);
 printnum(num);

 assignnum(num, 1024);
 printnum(num);

 $finish;
end

• Polymorphism in SUPERLOG

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Varargs and Structure Literals

unsigned byte checksum;
cell_type c2;

cell_type c1 = {8'ha7, 32'hfeeb1e00 };
c2 = {8'ha0, 32'hbeefea1e };

calc_check_sum(checksum, c1);
calc_check_sum(checksum, c1, c2);

task calc_check_sum (output unsigned byte checksum, ...);
 cell_type cell;
 checksum = 0;
 for (int i = 0; i < $varargc; i++)
 begin
 cell = cell_type'($varargv[i]);
 checksum += cell.header;
 end
endtask

typedef struct { byte header;
 bit [31:0] payload; } cell_type;

varargs

cast vararg to cell type

Structure initializer

Structure literal

Task can be called with
variable number of arguments

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Pointers
Queues

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Pointers

• SUPERLOG pointers point to any datatype
– Pointers can also reference any SUPERLOG object in a

design
• tasks, functions, processes, module instances

• More efficient to pass a pointer to a large structure
than copying it

• Uses safe pointers to make code easier to debug

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Safe Pointers

• A SUPERLOG safe pointer always points to a valid
reference or is null

• Runtime warnings are generated for
– Dereferencing an uninitialized or null pointer
– Deallocating memory when other pointers still have

references

• Can be turned off later to improve performance

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Pointer Syntax

• ref means "create a reference to"
– Declaration: ref int iptr;

– Note: Cannot mix pointer declarations with regular variables
– In an expression: iptr = ref i;

– Works the same as &i in C

• deref means "the object pointed to by"
– In an expression: deref iptr = i;

– Works the same as *iptr = in C

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Pointers and Structures

• Pointers to structures need separate typedefs
• A structure can have a pointer to its own type

typedef struct {
 int n;
 ref number_type next;
} number_type;

structure for a
linked list

task printlist(input ref number_type pstart);
automatic ref number_type p = pstart;
 while(p)
 begin
 $display("value=%d", p->n);
 p = p->next;
 end
endtask

walk through
the linked list

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Pointer Differences to C

main () {

typedef struct tmp {
 int value;
 char c;
 struct tmp *next;
 } struct_type;

struct_type st;
struct_type *p;

p = &st;
p->value = 17;
printf("value=%d\n", p->value);
printf("value=%d\n", (*p).value);
exit(0);
}

SUPERLOG

typedef struct {
 int value;
 char c;
 ref struct_type next;
 } struct_type;

struct_type st;
ref struct_type p;

p = ref st;
p->value = 17;
$display("value=%d", p->value);
$display("value=%d", (dref p).value);
$finish(0);

C

can usestruct_type inthe definition

C structure tag

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Pointers and Arrays

• Pointers can reference an unpacked array element
– The array name is not an pointer as in C

• Only pointers to an array can be incremented and
decremented

int a[1:10]; // declares an array of integers

ref int p; // declares that p will point to an integer

p = ref a[1]; // sets pointer to address of a[1]

p++; // increments pointer to address of a[2]

deref p = 1; // same as a[2] = 1

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

ref data_type p, p2;

p = $alloc(data_type);

p->n = 27;

p2 = p;

Dynamic Memory Allocation

$alloc returns apointer to a'data_type' item

p is a ref to
data_type

typedef struct {
 int n;
 bit [31:0] field;
 } data_type;

a structure as
a datatype

a second ref
p2 to the same

location

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Dynamic Memory Deallocation

• Safety has a performance hit
• Enabled/disabled by the simulator

Memory leak

Other pointers to memory
displayed

Safe Mode WarningSafe Mode ActionStatement

p = NULL;

p2 = NULL;

All pointers to memory
set to null

$delete(p)

All pointers to memory
set to null

$free(p)

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Queues

bit [7:0] myq[0:$]; define a queue of
8 bit logic items

Queue manipulation
syntax is similar to

concatenation and bit
select in packed arrays

Queue manipulation
syntax is similar to

concatenation and bit
select in packed arrays

•a queue is a variable
length array

•myq[0] myq[1] ... myq[$]

• Concise, Simple, Powerful. Intuitive Syntax.

out = myq[$];

myq = {n,myq[0:$]};

out = myq[0]; access the left
most item

myq = {myq,n};

access the right
most item

insert n at the left
side of the queue

append n on the
right

myq[x]=

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

More Queues

typedef struct {bit [9:0] addr;
 bit [51:0] data;
} packet;
packet qp [0:$];

Define a queue of packets

qp = qp[0:$-1];

for (int i=0; i<qp.$num; i++)
 qp[i] = ...

qp = qp[1:$]; Delete the left most item

n_items = qp.$num;

Delete the right most item

To step through the queue
use an integer index

Get the number of items in
the queue

qp = {}; Delete the whole queue

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Queue As a List

task qinsertafter(input int n, input int pos);
 begin
 if ((pos > q.$num) || (pos < 0))
 begin
 $display("ERROR out of bounds");

return;
 end

 if ((pos + 1) == q.$num)
 q = {q,n};
 else
 q = {q[0:pos], n, q[pos+1:$]};
 end
endtask

Task to insert
n after position

pos

• Queue operations can be encapsulated in tasks

append

some optionalerror checking

insert

task qinsertafter(input int n, input int pos);
 q = {q[0:pos], n, q[pos+1:$]};
endtask

Same Task in 3
lines

q[n,n-1] is taken to be {}
q[0:1] : 2 items
q[0:0]: 1 item
q[0,-1] : 0 items

q[n,n-1] is taken to be {}
q[0:1] : 2 items
q[0:0]: 1 item
q[0,-1] : 0 items

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

module shiftreg(input bit clk,
 input logic [7:0] in,
 output logic [7:0] out);

parameter int delay = 24;
logic [7:0] q [0:$];

initial
 repeat(delay) q = {8'bx, q};

always @(posedge clk)
 begin
 out = q[$];
 q = {in, q[0:$-1]};
 end

endmodule

Queue As a Fixed Length Shift Register

Fill up the
queue

Push and Pop
items

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Queues for Verification

Design

Compare
Response

Stimulus
Generation

Transactions

Data Stream

•Transactions span many clock cycles
•Queues accommodate variable latencies from input to output

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Queues and Pointers

block_p b_p;

always
 begin
 b_p = $alloc(packet_s);
 bp_q = {bp_q,b_p};
 send_block(b_p);
 end

•Move pointers instead of data
•Performance gained from high level abstraction

block_p b_p;

always
 begin
 @(posedge clk iff bp_q.$num)
 b_p = bp_q[0];
 bp_q = bp_q[1:$];
 receive_block(b_p);
 $free(b_p);
 end

typedef struct {
int field1;
int field2;

} packet_s;
typedef ref packet_s block_p;
block_p bp_q[0:$]; //global

Push

Pop

Stimulus

Response

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Operators

a <= b + c;

•All the operators you
would expect from Verilog
and C

• The power of C and Verilog

i = (s)?b:a;

x++;
if (++c > 17) c=0;

sig_a = x && y;
sig_o = x || y;

bump
operators

mux

a += 3;
s = 1 << n;

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Procedural Constructs

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Branch and Loop Constructs

if elseif (a < 0) return(-a);
else return(a);

for (i=0; i <= max; i=i+1)
 do_calc(i);

for

while (a != c)
 begin ...

while

repeat(n)
 @(posedge clk);

repeat

as in
Verilog 1995

do while like in Cdo while like in C
do
 a = next(a,b,c);
while (a != 0);

forever
 clk++;

forever

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Event Control

byte i;
initial

repeat (256) #10 i = $random;

always @(written i)
 $display("i has been assigned to %d, i);

always @(changed i)
 $display("i changed value to %d", i);

triggers whenever i is

written to, even if it does

not change value

•Useful for Transaction based designs

triggers only when ichanges value
always @(i)

is the same as
always @(changed i)

always @(i)
is the same as

always @(changed i)

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Event Control

• Can be used to trigger an event
– Static variables

• Can not be used to trigger an event
– Automatic variables
– Imported C variables

@(variable) // event control
wait(variable)

assign O = variable; // continuous assignment

mp inst(…,variable,,); // input to module or primitive

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Always Block Enhancements

always_comb
 a = b & c;

•always_comb
•always_latch

• always with an
implicit sensitivity
list• Better control of Synthesis, more security

always @(b or c)
 a = b & c;

Sensitive to all the

signals on the RHS

Works like
in Verilog

always_latch
 if(ck) q = d;

infers a latch

Signal on the LHS
must not bewritten to

anywhere else

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Comparison of Sensitivity List Styles

logic a;
always @(b or c)
 a = b & c;

Sensitive to all the
signals on the right

logic a;
always @(*)
 a = b & c;

logic a;
always_comb
 a = b & c;

wire w;
assign
 w = b & c;

Shorthand
form

SUPERLOG
always_comb also
evaluates at time 0

Verilog style assign
for wires

Initially x, because
the block only starts

evaluating on the
first change of b or c

Initially x, because
the block only starts

evaluating on the
first change of b or c

Proper wired logic
behavior: the signal

is evaluated at time 0
and whenever b or c

change

Proper wired logic
behavior: the signal

is evaluated at time 0
and whenever b or c

change

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Simulation vs. Synthesis Results

• Synthesis pragmas cause results to diverge
• SUPERLOG adds verifiable synthesis constructs
• priority case

– Tests each case condition in order and makes sure there is
at least one branch taken

• unique case
– Tests all case conditions and makes sure that one and only

one condition matches

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Priority and Unique Case

priority casez (b)
 4'b0000: $write("zero");
 4'b???1: $write("odd");
endcase

A non-zero even
number has no match

•No need for 'parallel_case' synthesis pragmas

unique casez (b)
 4'b0000: $write("zero");
 4'b???1: $write("odd");
 4'b???0: $write("even");
 default: $write("other");
endcase

"0" matches
zero and even

Simulation pre and post synthesis agreeSimulation pre and post synthesis agree

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Priority and Unique If

 unique if (!t[0])
 $display("even");
 else if (t[1])
 $display("big");
 else $display("small odd");

unique if means
that the else if
conditions do not

overlap

priority if gives warning
if there is no final else
but the else condition

happens

priority if gives warning
if there is no final else
but the else condition

happens

•Functions same as
priority/unique case

•Extra error checking

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Jumps

• Use break and continue in loops just like in C

forever
 begin
 n = n + 1;
 if ((n%3) == 0) continue;
 $display("n is %d", n);
 if (n == 22) break;
 end break breaksout of the loop

continue starts
the next loop

iteration

works with:
for
while
forever
repeat
do while

works with:
for
while
forever
repeat
do while

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Functions

function logic [15:0] func(
 logic m,
 bit [15:0] in1, in2);

 begin
 return((in1 + in2) ^ m);
 end
endfunction

input keyword
optional

return
keyword

function void print(int n);
 ...
endfunction

can have void
functions

(or use tasks)

begin end is optional
in task and functions

• SUPERLOG functions can have output arguments

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Recursive Functions

module top;
int n;
initial
 begin
 $display("The factorials from 1 to %d", MAX);
 for (n=0; n <= MAX; n = n + 1)
 $display("%d!=%d", n, factorial(n));
 end

function automatic int factorial (int n);
 if (n==0) return(1);
 else return(factorial(n-1) * n);
endfunction

endmodule
recursion

• Recursive functions and tasks are possible

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

module primesearch;
parameter int max = 20;
int primes[max:0];
int next;
initial
 begin
 int i;
 primes[0] = 2; next = 1;
 for (i=3; next<=max; i = i + 2)
 test_prime(i);
 end

task test_prime (input int try_this);
int i=0;
 while ((i < next) && ((2 * primes[i]) <= try_this))
 if (try_this % primes[i++] == 0) return;

 $display("%d is prime", try_this);
 primes[next++] = try_this;
endtask

endmodule

Tasks With Return

return
keyword

ANSI C style

header like for

modules

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Process Statement

always @(posedge clk) $display("tick...");

initial
 begin
 $display("%t We are at time zero", $time);
 process forever #10 clk = !clk;
 $display("%t We are still at time zero",
 $time);
 end

Monitor the clock

process is like a fork
without the join or the

& in Unix

 0 We are at time zero
 0 We are still at time zero
tick...
tick...
tick...
tick...
tick...

start process to
generate the clock

Output

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Retriggerable Always Block

always @(ev) process
 begin
 #10 $display("B done");
 end

•Impossible in Verilog
•Use with automatic tasks to create re-entrant code

always @(ev)
 begin
 #10 $display("A done");
 end

Start block

that takes time
time

ev evev ev

A AA

ev evev ev

B BB B

Event

swallowed up

Blocksexecuting inparallel

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Interfaces

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Public versus Private Interface Constructs

• Only basic interface definitions presented in this
tutorial

• Advanced communication capabilities and OO
features, contained within full interfaces, currently
available only under NDA

• Please contact Co-Design Automation for a full
interface definition

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

What Is an Interface?

int i;
logic [7:0] a;

typedef struct {
 int i;
 logic [7:0] a;
 } s_type;

wire w;
intf if1;

modA a (w, if1);

At the simplest
level an interface

is to a wire
what a struct is to

a variable

At the simplest
level an interface

is to a wire
what a struct is to

a variable

int i;
wire [7:0] a;

interface intf;
 int i;
 wire [7:0] a;
endinterface

You can think of a
wire as a built in

interface

You can think of a
wire as a built in

interface

•Encapsulates communication like a struct encapsulates data

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Systems Without the Interface Construct

module mem_control(
 input wire clk, global_reset,
 inout wire [63:0] data_bus,
 input wire ctl1, ctl2, ctl3,
 input bit pre1, pre2, pre3,
 input wire a0, a1, f_pdec,
 input wire f_dsj, f_dip,
 f_dil, g_ty0, g_ty1, g_ty2,

As in Verilog: Hierarchy is only
in the modules and not in the

interfaces which are all exploded
into separate wires

As in Verilog: Hierarchy is only
in the modules and not in the

interfaces which are all exploded
into separate wires

schematics map
to a Verilog

netlist

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Interfaces Reduce Interconnection Text

interface system_bus_intf;
 wire [63:0] data_bus;
 wire ctl1, ctl2, ctl3,
 bit pre1, pre2, pre3,

...

The system block

diagram maps to the

SUPERLOG code

using interfaces

• Concise, maintainable and readable code

module mem_control(
 interface system_bus,
 interface memory_interface,
 ...

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Interfaces Keep the Code Maintainable

a new signal needs

to be inserted only

in the interface

definition

• No need to edit dozens of files of intermediate levels to insert just one signal

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Modports

modA modB
sig1

sig2

interface iface_i;
 bit sig1, sig2;
 int internal;
 modport modeA(output sig1, input sig2),
 modeB(input sig1, output sig2);
endinterface

module modB(iface_i.modeB iface);
...
 iface.sig2 <= 1;
...
endmodule

module modA(iface_i.modeA iface);
...
 iface.sig1 <= 0;
 w <= iface.sig2;
...
endmodule

iface_i

Specifies the
accessibility and

direction of
interface signals

Not visible outside

of this interface

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Finite State Machines

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Simple FSM Example

State

•Simple FSM example

•finds serial pattern 101

TransitionS0

S2

S1

1
1

0

0

1 found_101=1

0

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Explicit Style

module FSM_1(output logic found_101,
 input logic serial, clk, reset);
parameter bit [1:0] S0 = 0, S1 = 1, S2 = 2;
bit [1:0] nextState;
bit [1:0] currentState;

always @(reset or serial or currentState) begin
 found_101 = 0;
 nextState = currentState;
 if(reset) nextState = S0;
 else case(currentState)
 S0: if (serial == 1) nextState = S2;

 S2: if (serial == 0) nextState = S1; else nextState = S2;

 S1: begin nextState = S0;
 if (serial == 1) found_101 = 1; end

 endcase
end

always @(posedge clk) currentState <= nextState;
endmodule

case statement for the
states

18 lines18 lines

need current and next
state variables

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Transition Based Style

module FSM_5(output logic found_101,
 input logic serial, clk, reset);
state {S0, S1, S2} S;

always @(posedge reset)
 transition (S) default:->> S0;
 endtransition

always @(posedge clk iff !reset)
 transition (S)
 S0:if (serial == 1) S0_S2 ->>S2;
 S2:if (serial == 0) S2_S1 ->> S1;
 S1:S1_S0 ->> S0;
 endtransition

always_comb found_101 <= S.S1 && serial;

endmodule

describe

transitions, rather

than states

13 lines13 lines

• Easily Human and machine understandable, compact

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Hierarchical State Machines

• Structured state machine declaration
state {STA, {s1, s2, s3}STB,
{ {s4, s5, s6}c1 and {s7, s8}c2 }STC
}hfsm1;

s1

s2 s3
s4

s5 s6

s7

s8

STA

STB STC
c1 c2

Concurrent states

assign out=hfsm1.STB;
assign out=hfsm1.s1 || hfsm1.s2 || hfsm.s3;

Equivalent
statements

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

typedef enum { none, ten, five } coin_type;

module vend (input coin_type coin,
 input bit clk,

 output bit fifteen);

state {s0, s5, s10, s15} st;

always @(posedge clk)
 transition(st)
 s0: if (coin == ten) t1 ->> s10; fifteen <= 0;
 else if (coin == five) t2 ->> s5; fifteen <= 0;
 s5: if (coin == ten) t3 ->> s15; fifteen <= 1;
 else if (coin == five) t4 ->> s10; fifteen <= 0;
 s10: if (coin == ten) t5 ->> s15; fifteen <= 1;
 else if (coin == five) t6 ->> s15; fifteen <= 1;
 s15: t7 ->> s0; fifteen <= 0;
 endtransition

endmodule

Vending Machine FSM Example

named

transitio
n

typedef

states

a state

action aftera transition

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

always #100 clk = !clk;

vend V (coin, clk, fifteen);

initial
 begin
 fork @V.st.t1; @V.st.t2;
 @V.st.t3; @V.st.t4;
 @V.st.t5; @V.st.t6;
 @V.st.t7; join
 $finish(0);
 end

always insert_coin(tossup());

function coin_type tossup();
 switch($random() % 3)
 case 1: return(five);
 case 2: return(ten);
 default: return(none);
 endswitch
endfunction

task insert_coin(input coin_type c);
 begin
 coin <= c;
 if (c == five) sum += 5;
 if (c == ten) sum += 10;
 @(posedge clk) coin <= none;
 @(posedge clk) if (sum >= 15) begin
 if (fifteen != 1) $display("ERROR");
 sum = 0;
 end
 else if (fifteen == 1)
 $display("ERROR");
 end
endtask

Vending Machine Testbench

random

stimulus

•Checking the Coverage

finish when all

transitions

have happened

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

C Interoperability

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG C Interoperability

• SUPERLOG and SYSTEMSIM includes the
capability to import and export C objects and
tasks/functions, in a manner that allows easy mixing
of C and SUPERLOG/Verilog code. This also
eliminates the use of the PLI within the simulator,
making the mechanism easy to use and fast.

• This capability is not described in the tutorial but
information may be obtained from Co-Design
Automation.

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Summary

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

The Co-Design Automation Product Line

C / C++ HDL

Design Elaborator
SYSTEMEX

C / C++
Extraction

HDL
Extraction

Constraint
Extraction

C / C++HDLConstraints
SYSTEMEX: Enabling SUPERLOG

abstraction
SYSTEMSIM: Performance,

Flexibility, Evolution

HW, SW, Architecture, Verification

Streamlining Design, Accelerating Verification

• Methodology
performance

• Multilingual
SoC flexibility

• Integration of
key functions

SYSTEMSIM
Multi-lingual Parser

Fast/Interactive
Simulation Kernel

Verification Solvers

D
eb

ug
 /

St
d.

 In
te

rf
ac

es

CBlend™ Technology

SUPERCHARGER

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

The SYSTEMSIM Unifying Simulator

• Performance AND Interactivity
– Unique Compiled Code / Interpreted

Supercharger enables fast, flexible simulation

• Integrated verification & system design
– Allows simulation/verification/system

abstraction all within single simulator

• Unique C / HDL Interleaving
– CBlend enables no-pli C, Verilog, SUPERLOG

mixing for speed and ease of use

• Fully functional Verilog drop-in capability
– Language, PLI, debug, third party interfaces

SYSTEMSIM
Multi-lingual Parser

Fast/Interactive
Simulation Kernel

Verification Solvers D
eb

ug
 /

St
an

da
rd

 In
te

rf
ac

es

CBlend™ Technology

SUPERCHARGER

Fast simulation with integrated verification and
seamless C/C++ interleaving, driven by SUPERLOG

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG Abstraction to Implementation

VOLARE

Get2Chip’s Volare
Architectural Synthesizer

reads SUPERLOG directly

Design Elaborator
SYSTEMEX

C / C++
Extraction

HDL
Extraction

Constraint
Extraction

Synthesis Tools

Fast, Abstract Code May Now Be Synthesized

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Co-Design Automation At Large

Aiming to open SUPERLOG for public standardization

SUPERLOG
announced

General
industry
interest

EDA
providers
commence
utilization

Customer
proven
flows

Language
experts

interested

Industry
steering
group

Steering
group

ratification

Standards
Organization
Ratification

SUPERLOG Relationships

Silicon Forest
Research, Inc.

+ 3 to be announced

SUPERLOG EDA Partners

Nortel
Transmeta

Toshiba
Seiko-Epsom

Micronas

Some Initial SUPERLOG Customers

Ericsson
ties

S2K

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG In Action - Ericsson

Architecture
SUPERLOG

Model

Architecture
SUPERLOG

Model

Implementation
SUPERLOG

(Verilog) RTL

Implementation
SUPERLOG

(Verilog) RTL

SU
PE

R
L

O
G

 /
C

V
er

ifi
ca

tio
n

En
vi

ro
nm

en
t

SU
PE

R
L

O
G

 /
C

V
er

ifi
ca

tio
n

En
vi

ro
nm

en
t

Refined ModelRefined Model

Refined ModelRefined Model

Seamless algorithm to implementation flow + linked verification,
provides modeling accuracy and methodology productivity

The process of Successive
Refinement allowed Ericsson to

develop high level algorithm
models, test them quickly, and
then switch in individual block
implementations and ensuring

minimal regressions

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

SUPERLOG In Action - Nortel Networks

“Co-Design's SUPERLOG language enables faster
design creation and effective verification, but in a

practical, evolutionary manner."
Anders Nordstrom, ASIC Development

Manager, Nortel Networks, Inc.

“Co-Design's SUPERLOG language enables faster
design creation and effective verification, but in a

practical, evolutionary manner."
Anders Nordstrom, ASIC Development

Manager, Nortel Networks, Inc.

Verilog
Design

Verilog
Design

Test
Generation

Blocks

Data Tagging QueuesData Tagging Queues

Protocol
Checks

Protocol
Checks

Nortel’s Networking Verification Environment
Several X faster than comparable envs., shorter learning curve

BF
M

BF
M

BF
M

BF
M

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

The First SUPERLOG “Tape-Out”

• Complex DSP device - parallel,
echo cancellation algorithm

• Project used combination of C
(CBlend) and SUPERLOG

• IP provided to Freehand
customer who taped out product

• Device completed on time with
first iteration success

SUPERLOG & SYSTEMSIM proven in customer design

“By eliminating interface overhead, SYSTEMSIM has enabled a clean and highly efficient
integration of our DSP Instruction Set Simulator (ISS) model. The resulting ease of use and
performance benefits will accelerate our development cycle by a significant factor.”
Harald Bergh, CEO, FreeHand Communication AB

“By eliminating interface overhead, SYSTEMSIM has enabled a clean and highly efficient
integration of our DSP Instruction Set Simulator (ISS) model. The resulting ease of use and
performance benefits will accelerate our development cycle by a significant factor.”
Harald Bergh, CEO, FreeHand Communication AB

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

Capabilities NOT INCLUDED In This Tutorial

SUPERLOG Publication Stages

Verilog95 Verilog
2000

C
Programming

Features

Complex
Structures
(Queues,
Processes

etc.)

Verilog
Additions

System
Features

(Interfaces,
Control,

etc.)

Verification
Features
(Asserts,

Coverage,
etc)

C
Interoperability

• Verification capabilities including test generation, result checking,
coverage and property specification.

• Object Orientated features including the use of class
• Communication Orientated features and other interface capabilities
• Various other programming and system abstraction features
• Some Verilog 2000 features

HDLCon
Tutorial

For More Information On These Please Contact Co-Design Automation.

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001 - SUPERLOG Public Subset

PLI RTL Impl.Debug SimulationAlgo. Model Tests

Order Of Magnitude Productivity Enhancements

• Concise RTL implementation
• PLI elimination
• Simulation speed acceleration

• Integrated algorithm modeling
• Efficient testbench creation
• Rapid debug

Direct Performance Overall Productivity

Practical Productivity

Time Saved

More Information?

Please Contact:
Co-Design Automation, Inc.
Tel: 1 877 6 CODESIGN
Email: info@co-design.com
Web: www.co-design.com
 www.superlog.org

© 2001 Co-Design Automation, Inc.
Tutorial presented at HDLcon 2/28/2001

