My Head Hurts, My Timing Stinks, and
| Don’t Love On-Chip Variation

Matt Weber

Silicon Logic Engineering, Inc

matt@siliconlogic.com
Matthew.D.Weber @ieee.org

ABSTRACT

Abstract: Some ASIC vendors require designers to run static timing with on-chip variation
analysis. For the uninitiated, this task can be both confusing and frustrating. This paper will show
you:

1. Why on-chip variation analysis is important.

2. How to do on-chip variation analysisin Primetime.

3. How Primetime's on-chip variation analysis compares to Einstimer's linear combination of
delays (LCD).

4. Why some ASIC vendors require on-chip variation analysis and some don't.

SILE

Silicon Logic Engineering

Copyright © 2002 Silicon Logic Engineering, Inc. All Rights reserved.

No part of this publication may be reproduced, stored in aretrieval system, or transmitted in any form or by any
means without prior written permission from Silicon Logic Engineering, Inc.

In the U.S. and numerous other countries, SLE and the SLE logo are trademarks of Silicon Logic Engineering, Inc.

All other products or services mentioned herein may be trademarks of their respective owners.

About SLE

SLE isasemiconductor design services company that provides ASIC and system technology services to
the world's leading electronic systems and fabless semiconductor companies who require high-end chip
design expertise. SLE's ASICBlaster solution dramatically reduces the time it takes its customers to get
their products to market by offering a proven and repeatable design process, tools and semiconductor
intellectua property (SIP). Founded in 1996 by former Cray Research engineers, SLE is headquartered in
Eau Claire, Wisconsin.

Contact us: www.siliconlogic.com
Silicon Logic Engineering, Inc.
7 South Dewey Street

Eau Claire, Wisconsin 54701
800-757-9058

SNUGBoston 2002 2 Matthew.D.Weber @ieee.org

1.0 Introduction

No two cells are the same. The same cell on two different chips could have dramatically different
timing characteristics. That is why static timing sign-off is never complete until runs have been
made with both the best-case and worst-case operating conditions. Additionally, two copies of
the same cell on the same chip can have different timing characteristics. This on-chip variation is
small compared to chip-to-chip variation. However, the effect still needs to be accounted for
somewhere in static timing analysis. One method is to use the on-chip variation analysis feature
of your static timing analysistool.

2.0 What ison-chip variation?

Constructing acell on an ASIC is aprocess that involves many variables. Some of these
variables are fairly consistent for the entire manufacturing process. Some variables vary from lot
to lot but are consistent across asingle lot of wafers. Still other variables vary from wafer to
wafer but are consistent across a chip. Finally, some of the variations can occur within asingle
chip.

Examples of variables that can occur on a single chip include small variations in the mask,
imperfections in optical proximity correction, and etch variations. Additionally, many of these
variations can occur over avery small area. Consider for example a string of buffersthat are all
placed in arow. The gatesin the middle of the string all have the same structures on each side,
but the gates at the ends of the string are adjacent to different features that may cause different
variations in the etching process.

The many variables involved in the manufacturing process mean the gate delay of acell isredly
a Gaussian distribution with a mean and standard deviation determined by the cell design and
these many variables. A randomly chosen instance of acell on arandomly chosen chip could be
running at any point within that Gaussian distribution [figure 1]. Fortunately, timing analysis
does not need to directly verify the chip’s operation at every point in the distribution. Instead, if a
design is shown to work at both best case and worst case, it is assumed to work at any point in
between.

The cells on asingle chip, however, still have their own distribution asin figure 1. Ignoring this

distribution by running only best case and worst case analysis can lead to problems which are
discussed in the next section.

SNUGBoston 2002 3 Matthew.D.Weber @ieee.org

Gate Delay Distribution

] ——Process
——WC chip

200 225 250 275 300 325 350
Gate Delay (ps)

[Figure 1. Gaussian distributions for a manufacturing process and for asingle, worst case chip.]

3.0 Problemsthat On-chip variation can cause

3.1 Setup Problems

The circuit in figure 3 shows one of the critical paths on the chip. While the differencesin
loading of the clock drivers and parasitics of the clock nets will be included in calculating the
clock arrival times at the flops, the on-chip variation effects are not being considered when doing
aworst-case only analysis. If the clock path clock driver ends up being slightly faster than the
data path clock driver, thereis a potential of manufacturing chips which have setup violations
that your static timing analysis didn’t tell you about.

Clk 1_1

clk 3 1
Clk 2.1 ﬁ ﬁ

Clk_1_2

[Figure 2. Critical path used in setup examples]|

3.2 Hold Problems

In the circuit in figure 3, we have avery short logic path between two flops. Again, aworst-case
or best-case only analysis will consider loading and parasitics of the clock tree, but the on-chip
variation effects will not be modeled. If the data path clock driver ends up being dlightly faster
than the clock path clock driver, thereis a potential of manufacturing chips which have hold
violations that your static timing analysis didn’t tell you about.

SNUGBoston 2002 4 Matthew.D.Weber @ieee.org

[Figure 3. Short path used in hold examples]

3.3 Clock Gating

Thecircuit in figure 4 isaclock gating circuit. It starts with a clock divider register. The clock
tree fanning out from there starts with a single clock buffer in the first level. The second level of
the clock tree has four clock drivers, one of which isaNAND gate performing a clock gating
function. To prevent glitches or pulse shrinkage caused by the clock gate, the gating input of the
NAND should only change when the clock input to the NAND islow. Thisis best accomplished
by using a negative edge triggered flip flop for the gating register. If the stage 1 clock driver and
the gating register are both modeled with worst case delays, but the clock to Q time of the gating
register ends up being alittle bit faster, you have the potential for shortening the clock when you
enter power down mode and glitching the clock when you exit power down mode.

Y Yy

| {>C _‘; T
|
[Figure 4. Circuit used in clock gating exampl es]

SNUGBoston 2002 5 Matthew.D.Weber @ieee.org

4.0 Timing without On-Chip variation

The appendices include the timing scripts that were used to constrain the chip for the examples
here. First let’slook at how the worst case path 1ooks before we turn on on-chip variation
analysis. We have included the —path_type full_clock option to the report timing command so we
can watch what happens to the clock tree delays when OCV analysis gets turned on.

> report_timing -nosplit -input_pins -to [get_pins "$max_pin $clkgate pin"] -path_type
full_clock

Startpoint: tx_Il/ct_arb/ct_man/nbst rlt 1
(rising edge-triggered flip-flop clocked by clk core)
Endpoint: tx_Il/ct_arb/ct_man/ct_ay rg 43 4
(rising edge-triggered flip-flop clocked by clk _core)
Path Group: clk _core
Pat h Type: max

Poi nt I ncr Pat h
clock clk _core (rise edge) 0. 00 0. 00
cl ock source | atency 0. 00 0. 00
clk _core (in) 0. 00 0.00 r
clk _core box 3 1/A (CLK Q 0. 00 0.00 r
clk core box 3 1/Z (CLK Q 0.17 + 0.17 r
clk _core box 2 6/A (CLKI_O 0.11 * 0.29 r
clk _core box 2 6/Z (CLKI_O 0.26 + 0.54 f
clk _core box 1 69/A (CLKI_O 0.07 * 0.62 f
clk _core box 1 69/Z (CLKI_O 0.18 + 0.80 r
tx Il/ct_arb/ct_man/nbst rlt_1/E (D _F _LPHO001 LPC E) 0.01 * 0.81r
tx Il/ct_arb/ct_man/nmbst rlt_1/L2 (D_F_LPHO001 LPC E) 0.41 1.22 f
tx _Il/ct_arb/ct_nman/UL137/ A (AND2_E) 0.01 1.23 f
....Data path renoved fromreport

tx _|Il/ct_arb/ct_nman/WU4921/Z (OQA21_H) 0.14 17 f
tx Il/ct_arb/ct_man/ct_ay rg_43 4/D (D_F_LPHO002 LPC E) 0.00 17 f

data arrival tinme

clock clk _core (rise edge)

cl ock source | atency

clk _core (in)

clk _core box 3 1/A (CLK Q

clk _core box 3 1/Z (CLK Q

clk _core box 2 6/A (CLKI_O

clk _core box 2 6/Z (CLKI_O

clk _core box 1 101/ A (CLKI_O

clk _core box 1 101/z (CLKI_O

tx Il/ct_arb/ct_man/ct_ay rg 43 4/E (D_F_LPHO002 LPC E)
cl ock uncertainty -
library setup tine

w
o
== —h—h= = = =

coocooo00000W
N
(o]
* 4k 4 * 4
PRARRAPPOWOWE ARA
o
a1

data required tine 24
data required tine 4. 24
data arrival tine -4.17
sl ack (MET) 0. 07

SNUGBoston 2002 6 Matthew.D.Weber @ieee.org

The clock tree in this section of the chip happens to be perfectly balanced such that the clock
arrival time at the startpoint register is the same as the clock arrival time at the endpoint register.
The clock uncertainty is set to 100 psto model PLL jitter. For the moment it looks like timing is
great, but we haven't accounted for the possibility that, although clk_core box_1 69 and
clk_core box_1 101 are both modeled with worst case timing, in reality they may have dlightly
different propagation delays. The clock nets that are not common to both paths may also
introduce some variability.

The tests on our short path and clock_gating hold check show similarly encouraging results.

> report _timng -nosplit -input_pins -delay mn -to [get_pins "$mn_pin
$cl kgate _pin"] -path_type full _clock

Startpoint: tx_py/py_stat/o tstatO
(rising edge-triggered flip-flop clocked by xi _tsclk)
Endpoint: tx Il/basic/stat_ck/tstat _reg O
(rising edge-triggered flip-flop clocked by xi_tsclk)
Path Group: xi_tsclk
Path Type: nin

Poi nt I ncr Pat h
clock xi _tsclk (rise edge) 0. 00 0. 00
cl ock source | atency 0. 00 0. 00
Xi _tsclk (in) 0. 00 0.00 r
Xi _tsclk _box 2 1/A (CLKI _Q 0. 00 0.00 r
xi _tsclk_box_2 1/Z (CLKI _Q 0.24 + 0.24 f
xi _tsclk_box_1_10/A (CLKI_O 0.16 * 0.40 f
Xi _tsclk _box 1 10/z (CLKI_O 0.26 + 0.66 r
tx_py/py_stat/o tstatO0/E (D _F _LPHOO001 H) 0.06 * 0.72 r
tx_py/py_stat/o tstat0/L2 (D _F_LPHO001 H) 0.14 0.85 f
tx_|1/basic/stat_ck/ U371/ A (BUFFER F) 0.00 0.85 f
tx_|1/basic/stat_ck/ U371/ Z (BUFFER F) 0.09 0.94 f
tx _|Il/basic/stat_ck/tstat _reg 0/D (D_F_LPHO001 LPC E) 0.00 0.95 f
data arrival tine 0.95
clock xi _tsclk (rise edge) 0.00 0. 00
cl ock source | atency 0. 00 0. 00
Xi _tsclk (in) 0. 00 0.00 r
Xi _tsclk _box 2 1/A (CLKI _Q 0. 00 0.00 r
xi _tsclk_box_2 1/Z (CLKI _Q 0.24 + 0.24 f
xi _tsclk_box_1_8/A (CLKI_O 0.16 * 0.40 f
Xi _tsclk _box 1 8/Z (CLKI_O 0.26 + 0.66 r
tx _|Il/basic/stat_ck/tstat reg O/E (D _F_LPHO001 LPC E) 0.06 * 0.71 r
cl ock uncertainty 0.10 0.81
tx _|Il/basic/stat_ck/tstat reg O/E (D _F_LPHO001 LPC E) 0.81r
library hold tinme -0.03 0.78
data required tine 0.78
data required tine 0.78
data arrival tine -0.95
sl ack (MET) 0.17

SNUGBoston 2002 7 Matthew.D.Weber @ieee.org

Startpoint: clk _rst_400/enable_cl k _2nd_di vby2 reg/E
(internal path startpoint clocked by clk 200)
Endpoint: clk 200 box 2 4
(rising clock gating-check end-point clocked by clk 200)
Path Group: **clock gating default**
Path Type: nin

Poi nt I ncr Pat h
clock clk_200 (fall edge) 2.50 2.50
cl ock source | atency 0.72 3.22
cl k_rst_400/cl k_2nd_di vby2 reg/ L2 (D _LDRO001 _E) 0.00 3.22 f
cl k_rst_400/ enabl e _cl k _2nd_di vby2 reg/ E (D _LDFO001_E) 0. 00 3.23 f
i nput external del ay 0.00 3.23 f
cl k_rst _400/enabl e _cl k_2nd_di vby2 reg/L2 (D LDFO0O01_E) 0.41 3.63 r
cl k_200_box_2_4/ B (NAND2_O) 0.00 3.63 r
data arrival tine 3. 63
clock clk_200 (fall edge) 2.50 2.50
cl ock source | atency 0.72 3.22
cl k_rst_400/cl k_2nd_di vby2 reg/ L2 (D _LDRO001 _E) 0. 00 3.22 f
cl k_200_box_3_1/A (CLK_Q 0.00 3.22 f
cl k_200_box_3_1/Z (CLK_Q 0.20 + 3.42 f
cl k_200_box_2_4/ A (NAND2_O) 0.06 * 3.49 f
cl k_200_box_2_4/ A (NAND2_O) 3.49 f
clock gating hold tine 0. 00 3.49
data required tine 3.49
data required tine 3.49
data arrival tine -3.63
sl ack (MET) 0.14

5.0How to Model On-Chip Variation in Primetime

To do on-chip variation analysis, every timing arc in the design must have both a minimum and a
maximum delay which account for the on-chip variation. These are not the same delays that you
would use for a simple min-max analysis. Those delays represent the minimum and maximum
delays that will be seen across all chips from that process. For on-chip variation anaysis, we
want the minimum and maximum delays that could be seen across a single chip. For on-chip
variation analysis we will make two analysis runs. The “slow-chip” analysis will set the
maximum delays at the worst case delays for the process and the minimum delays dlightly faster
than that. For the “fast-chip” analysis, we will set the minimum delays to the best case delays for
the process, and we will set the maximum delays slightly slower than the best case delays.

Primetime has several methods for specifying these delays.

5.1 Annotate from one SDF file

If you are back-annotating delays from an SDF file, Primetime can get the delay values from the
min and max of the SDF triplet.

read_sdf -analysis_type on_chip_variation foo. sdf

SNUGBoston 2002 8 Matthew.D.Weber @ieee.org

5.2 Annotate from two SDF files
Another choiceisto read the data from two SDF files.

read_sdf -analysis type on_chip variation —mn_file foo_mn.sdf \
—-max_file foo_max. sdf

5.4 Two Operating conditions

Sometimes you may have operating conditions specifically scaled for use with on-chip variation
anaysis. For aslow chip analysis, the worst case operating condition is specified with —max and
the scaled worst case operating condition is specified with —min. For afast chip analysis, the best
case operating condition is specified with —min and the scaled best case operating condition is
specified with —max.

set _operating_conditions —analysis type on_chip_variation —mn $WCOCV —max $WC

5.4 Single Operating condition

On-chip variation analysis can still be run even if you have only one operating condition. In this
case the minimum and maximum times are ssimply scaled versions of the delays determined from
the single operating condition that is loaded. The scaling factors are set by the set_timing_derate
command described next. Thisis the method that was used for this paper.

set _operating _conditions —anal ysis_type on_chip_variation $0OP_CON
set _tinng derate —mn 0.8 —nax 1.0

5.5 Set_timing_derate

The set_timing_derate command can be used with any of the above methods to provide further
scaling of the timing paths. Scaling factors can be set independently for data paths, clock paths,
cell delays, net delays, and cell timing checks. If neither —clock nor -datais specified, the
derating factors apply to both clock and data paths. If —cell_delay, -net_delay, and —cell_check
are all omitted from the command, the derating factors apply to both cell and net delays, but not
to cell timing checks such as setup and hold times.

For example the following commands could be used to do afast chip analysis with the best case
operating condition loaded, ten percent variation in cell delays, five percent variation in net
delays, and afive percent variation in cell timing checks.

set _operating_conditions —anal ysis_type on_chip_variation $BC OP_CON
set timng derate —-mn 1.0 —max 1.10 —cel |l _del ay

set timng derate —mn 1.0 —max 1.05 —net _del ay

set timng derate —-mn 1.0 —max 1.05 —cell _check

SNUGBoston 2002 9 Matthew.D.Weber @ieee.org

6.0 My Timing Stinks!!
After two simple commands to turn on on-chip variation anaysis, we find out that our timing
stinks and we don'’t love on chip variation analysis.

set _operating_conditions -anal ysis_type on_chip_variation
set _tinng derate -mn 0.8 -nax 1.0

Here we are telling Primetime to assume that the min paths can be twenty percent faster than the
max paths. That's alot. More typically on-chip variation is modeled at six or eight or maybe ten
percent. Your ASIC or library vendor should tell you what is appropriate for the library that you
are using.

6.1 Setup Problems

When doing a setup test, the timing tool wants to verify that the latest possible data arrival can
still be captured by the earliest possible clock arrival at the endpoint register. The latest possible
data arrival is determined by taking the maximum delays along the clock path to the startpoint
register and the maximum delays along the slowest data path from the startpoint register to the
endpoint register. The earliest possible clock arrival at the endpoint register is determined by
taking the minimum delays along the clock path to the endpoint register.

Our long timing path, which previously had seventy picoseconds of positive slack, is now failing
by ninety picoseconds.

Startpoint: tx_Il/ct_arb/ct_man/nbst rlt 1
(rising edge-triggered flip-flop clocked by clk core)
Endpoint: tx_Il/ct_arb/ct_man/ct_ay rg 43 4
(rising edge-triggered flip-flop clocked by clk _core)
Path Group: clk _core
Pat h Type: nmax
M n Cock Paths Derating Factor : 0.80

clock clk _core (rise edge)

cl ock source | atency

clk _core (in)

clk _core box 3 1/A (CLK Q

clk _core box 3 1/Z (CLK Q

clk _core box 2 6/A (CLKI_O

clk _core box 2 6/Z (CLKI_O

clk _core box 1 69/A (CLKI _O

clk _core box 1 69/Z (CLKI_O

tx _Il/ct_arb/ct_man/nbst rlt_1/E (D _F _LPHO001 LPC E)
tx Il/ct_arb/ct_man/nbst rlt_1/L2 (D_F_LPHO001 LPC E)
tx _Il/ct_arb/ct_nman/UL137/ A (AND2_E)

COLLLLLLLLeL
N -
[N
* 4 * 4k 4

PRO000000000
[¢)] N
N (o]

e e T s s e s M B

:::.Data path renoved from report

tx_|1/ct_arb/ct_man/ U921/ Z (QA21_H) 0.14 4.17 f
tx Il/ct_arb/ct_nman/ct_ay rg_43 4/D (D_F_LPHO002 LPC E) 0.00 4,17 f
data arrival tine 4. 17

SNUGBoston 2002 10 Matthew.D.Weber @ieee.org

clock clk _core (rise edge) 3.76 3.76
cl ock source | atency 0. 00 3.76
clk _core (in) 0.00 3.76 r
clk _core box 3 1/A (CLK Q 0.00 3.76 r
clk core box 3 1/Z (CLK Q 0.14 + 3.90 r
clk _core box 2 6/A (CLKI_O 0.09 * 3.99 r
clk _core box 2 6/Z (CLKI_O 0.21 + 4,20 f
clk _core box 1 101/A (CLKI _O 0.06 * 4,25 f
clk _core box 1 101/z (CLKI_O 0.14 + 4.40 r
tx Il/ct_arb/ct_man/ct_ay rg_43 4/E (D _F_LPHO0O02 LPC E) 0.01 * 4.41 r
cl ock uncertainty -0.10 4. 31
library setup tine -0.23 4.08
data required tine 4.08
data required tine 4.08
data arrival tine -4.17
sl ack (VI OLATED) -0.09

The path that is timed with maximum delays, the data path, shows the same timing as before.
However, the clock latency to the endpoint register, using minimum delays, is now 160 ps faster
than before.

6.2 Hold Problems

When doing a hold test, the timing tool wantsto verify that the earliest possible data arrival does
not arrive at the endpoint register before the latest possible clock arrival. So we use min delays
for the clock path to the startpoint register, min delays through the shortest data path, and max
delays for the clock path to the endpoint register.

Here again, a previously passing timing check has now started to fail.

Startpoint: tx_py/py_stat/o tstatO
(rising edge-triggered flip-flop clocked by xi _tsclk)

Endpoint: tx Il/basic/stat_ck/tstat _reg O

(rising edge-triggered flip-flop clocked by xi_tsclk)
Path Group: xi_tsclk
Path Type: nin
M n Data Paths Derating Factor : 0.80
M n O ock Paths Derating Factor : 0.80

clock xi _tsclk (rise edge)

cl ock source | atency

Xi _tsclk (in)

Xi _tsclk _box 2 1/A (CLKI _Q

Xi _tsclk _box 2 1/Z (CLKI _Q

Xi _tsclk _box 1 10/A (CLKI_O

Xi _tsclk _box 1 10/z (CLKI_O
tx_py/py_stat/o tstatO0/E (D _F _LPHOO01 H)
tx_py/py_stat/o tstat0/L2 (D _F_LPHO001 H)
tx_|1/basic/stat_ck/ U371/ A (BUFFER F)
tx_|l1/basic/stat_ck/ U371/ Z (BUFFER _F)
tx _|Il/basic/stat_ck/tstat _reg 0/D (D_F_LPHO001 LPC E)
data arrival tine

COLOLOO00O00o000
N B
= W
* 4k 4

COOO0O0O00O00o0000
(O8]
~Nw
—h =h —h —h = = —h —h — —

SNUGBoston 2002 11 Matthew.D.Weber @ieee.org

clock xi _tsclk (rise edge) 0. 00 0. 00
cl ock source | atency 0. 00 0. 00
xi _tsclk (in) 0.00 0.00 r
Xi _tsclk _box 2 1/A (CLKI _Q 0.00 0.00 r
xi _tsclk_box_2 1/Z (CLKI _Q 0.24 + 0.24 f
xi _tsclk_box_1_8/A (CLKI_O 0.16 * 0.40 f
Xi _tsclk _box 1 8/Z (CLKI_O 0.26 + 0.66 r
tx _ |Il/basic/stat_ck/tstat reg O/E (D _F_LPHO001 LPC E) 0.06 * 0.71 r
cl ock uncertainty 0.10 0.81
tx _|Il/basic/stat_ck/tstat reg O/E (D _F_LPHO001 LPC E) 0.81r
library hold tinme -0.03 0.78
data required tine 0.78
data required tine 0.78
data arrival tine -0.76
sl ack (VI OLATED) -0.02

As expected, the clock pin at the endpoint register has the same arrival time asit did before, but
the data path is now 190ps faster.

6.3 Clock Gating Problems

With an AND gate, we want to verify that the gating signal can only change while the clock is
low. A hold check is done to verify that the gating signal changes after the falling edge of the
clock, and a setup check is done to verify that the gating signal changes before the next rising
edge of the clock. We're not looking at the setup check here because it has lots of positive slack
and is therefore not very interesting. The hold check is going to use min delays along the gating
path and max delays along the clock path.

Startpoint: clk _rst_400/enable_cl k _2nd_di vby2 reg/E
(internal path startpoint clocked by clk 200)

Endpoint: clk 200 box 2 4

(rising clock gating-check end-point clocked by clk 200)
Path Group: **clock gating default**
Path Type: nin
M n Data Paths Derating Factor : 0.80
M n Cock Paths Derating Factor : 0.80

Poi nt I ncr Pat h
clock clk_200 (fall edge) 2.50 2.50
cl ock source | atency 0.58 3.08
cl k_rst_400/cl k_2nd_di vby2 reg/ L2 (D _LDRO001 _E) 0. 00 3.08 f
cl k_rst_400/ enabl e _cl k _2nd_di vby2 reg/ E (D _LDFO001_E) 0. 00 3.08 f
i nput external delay 0. 00 3.08 f
cl k_rst_400/ enabl e_cl k_2nd_di vby2 reg/L2 (D LDFO0O01_E) 0. 33 3.41 r
cl k_200_box_2_4/ B (NAND2_O) 0. 00 3.41 r
data arrival tine 3.41
clock clk_200 (fall edge) 2.50 2.50
cl ock source | atency 0.72 3.22
cl k_rst_400/cl k_2nd_di vby2 reg/ L2 (D _LDRO001 _E) 0.00 3.22 f
cl k_200_box_3_1/A (CLK_Q 0.00 3.22 f
cl k_200_box_3_1/Z (CLK_Q 0.20 + 3.42 f
cl k_200_box_2_4/ A (NAND2_O) 0.06 * 3.49 f
cl k_200_box_2_4/ A (NAND2_O) 3.49 f
clock gating hold tine 0. 00 3.49

SNUGBoston 2002 12 Matthew.D.Weber @ieee.org

data required tine 3.49

data required tine 3.49
data arrival tine -3.41
sl ack (VI OLATED) -0.08

7.0 What is Clock Reconver gence Pessmism Removal?

Taking a careful look at the timing reports above, we can see that we are being unfairly punished.
For example, in the setup case, clock driver clk_core box_3 1 isin both the data path and the
clock path. In the data path it is given a propagation time of 170ps, whilein the clock path it is
given a propagation time of 140ps. While the propagation delay of that cell could be either 140ps
or 170ps, it can’t be both! If the propagation delay for an edge on its way to the data path was
170ps, then it was also 170ps on its way to the clock path. To assume differently is overly
pessimistic.

Primetime is able to correct this problem through an algorithm called clock reconvergence
pessimism removal (CRPR). To enable CRPR, simply set the appropriate variable.

set tining renove_cl ock _reconvergence_pessimsmtrue

Lets seewhat it doesto our failing setup test:

Startpoint: tx_Il/ct_arb/ct_man/nbst rlt 1
(rising edge-triggered flip-flop clocked by clk core)
Endpoint: tx_Il/ct_arb/ct_man/ct_ay rg 43 4
(rising edge-triggered flip-flop clocked by clk _core)
Path Group: clk _core
Pat h Type: max
M n Cock Paths Derating Factor : 0.80

Poi nt I ncr Pat h
clock clk _core (rise edge) 0. 00 0. 00
cl ock source | atency 0. 00 0. 00
clk _core (in) 0. 00 0.00 r
clk _core box 3 1/A (CLK Q 0. 00 0.00 r
clk _core box 3 1/Z (CLK Q 0.17 + 0.17 r
clk _core box 2 6/A (CLKI_O 0.11 * 0.29 r
clk _core box 2 6/Z (CLKI_O 0.26 + 0.54 f
clk _core box 1 69/A (CLKI_O 0.07 * 0.62 f
clk _core box 1 69/Z (CLKI_O 0.18 + 0.80 r
tx Il/ct_arb/ct_man/nbst rlt_1/E (D _F _LPHO001 LPC E) 0.01 * 0.81r
tx Il/ct_arb/ct_man/nmbst rlt_1/L2 (D_F_LPHO001 LPC E) 0.41 1.22 f
tx _Il/ct_arb/ct_nman/UL137/ A (AND2_E) 0.01 1.23 f
...Data path renmoved fromreport
tx _Il/ct_arb/ct_nman/W4921/ Z (OQA21_H) 0.14 4,17 f
tx Il/ct_arb/ct_man/ct_ay rg_43 4/D (D_F_LPHO002 LPC E) 0.00 4,17 f
data arrival tine 4.17
clock clk _core (rise edge) 3.76 3.76
cl ock source | atency 0. 00 3.76

SNUGBoston 2002 13 Matthew.D.Weber @ieee.org

clk _core (in)

clk _core box 3 1/A (CLK Q 00 76
clk core box 3 1/Z (CLK Q 14 90
clk _core box 2 6/A (CLKI_O 09 99
clk _core box 2 6/Z (CLKI_O

clk _core box 1 101/ A (CLKI_O

clk _core box 1 101/z (CLKI_O

tx Il/ct_arb/ct_man/ct_ay rg 43 4/E (D_F_LPHO002 LPC E)
cl ock reconvergence pessim sm

cl ock uncertainty

library setup tine

data required tine

1 1
COOCLOOOOCO0Oo
o N
[N]
* 4 * 4k 4
A e
B N
o o
_~ = —h—h—= = = =

data required tine 4.19
data arrival tine -4.17
sl ack (MET) 0.01

The timing report isidentical to what we had before CRPR was turned on, with one important
exception. Primetime has looked at the cells and nets which are common between the data path
and the clock path, calculated the difference between their min and max times, and used the total
as an adjust to the clock path. This adjustment shows up in anew line called “ clock
reconvergence pessimism.”

With this adjustment, our setup check is now passing! The hold and clock gating tests pass now
also with +30ps and +60ps of slack respectively.

Because it noticeably increases runtime and memory usage, the CRPR algorithm is turned off by
default. One option for reducing the impact on runtime and memory usage isto alow some
amount of clock reconvergence pessimism to remain in the analysis. The variable
timng_crpr_threshol d_ps specifies the pessimism removal threshold. Its default valueis
20ps which allows 20ps of reconvergence pessimism to remain in the analysis.

8.0 How Primetime’ s On-Chip Variation Analysis comparesto Einstimer’s
linear combination of delays (LCD)

Users of IBM’s Einstimer static timing analysis tool have been doing on-chip variation analysis
for years. In Einstimer the processis caled “linear combination of delays’ or LCD mode. The
concepts are the same. Every point has both amin (called early) and amax (called late) time. A
setup check tests the late data arrival time against the early clock arrival time. A hold check tests
the early data against the late clock. However, Einstimer is different in the way that those early
and late arrival times are calcul ated.

In Primetime, when you specify an operating condition, you are specifying the temperature,
voltage, and process point that the cells are going to be modeled at. In Einstimer, you set the
temperature and voltage for the analysis that you want to do, but you don’t specify a process
point. Einstimer is going to use both the best and worst process points in its calculations. Every
path in the design has both a best case delay and aworst case delay for the specified temperature
and voltage. However, these delays represent the variation of the entire manufacturing process,

SNUGBoston 2002 14 Matthew.D.Weber @ieee.org

not the variation found on a single chip. Y ou then tell Einstimer what timing mode you would
liketo run in. Best case mode is typically run with high voltage and low temperature. Worst case
mode is typically run with low voltage and high temperature. LCD mode is what we really want
to do, and it istypically run twice. First it is run with low voltage and high temperature to do our
slow chip analysis. Then it is re-run with high voltage and low temperature to do our fast chip
anaysis.

Because the best case delay and worst case delay that are associated with the paths in the design

represent the entire process instead of asingle chip, they are not directly used against each other.

Instead, they are combined to come up with the early and late times that are used for the setup,

hold, and other timing checks. The differences between best, worst, early, and late arrival times

are afrequent source of confusion, so it isworth repeating.

> Best/Worst : Represent variation of entire process, not timed against each other, defined at a
specific voltage and temperature.

> Early/Late : Represent the variation of on asingle chip, are timed against each other,
calculated from the best case and worst case values.

The early and late arrival times are calculated from the best case and worst case numbers using a
set of scaling factors. For aslow chip analysis the factors may look like this:

Best Nom Wor st
Early 0.10 0.00 0.90
Lat e 0. 00 0.00 1.00

These factors tell Einstimer that the early arrival times are calculated by adding together the best
case time multiplied by 0.10 and the worst case time multiplied by 0.90. The late arrival times
are simply the worst case times. In practice the factor that is multiplied against the nominal case
number is always zero.

Factors for afast chip analysis may look like this:
Best Nom Wor st

Early 1.00 0.00 0.00

Late 0.90 0.00 0.10

As you would expect, Einstimer has a capability similar to Primetime’s CRPR. The name of the
function and its abbreviation are also similar. In Einstimer it is called “common path pessimism
remova” or CPPR.

9.0My head hurts, my FETs stink

The SPI-4 IP core that we' ve been using for these examples includes a source synchronous DDR
output that servesto illustrate another consideration when running on-chip variation. Paul
Zimmer and Andrew Cheng presented a paper [1] at San Jose SNUG this year detailing how to
set up timing for this type of an interface. The basic circuit looks like this:

SNUGBoston 2002 15 Matthew.D.Weber @ieee.org

S -
| - b=
oneg_req
dout_rmue 4D> dout
o = A
v dpos_reg
>
¥ 3 e

< -
clkout_muse f——— D clkout

T —e

[Figure 5. Circuit for source synchronous DDR output]

This circuit looks like a perfect candidate for CRPR. Except for the final mux and the 10 driver,
the clock and data paths are entirely common. Our check for the duty cycle on the clock output
should be even better. Obviously, arising edge going from the reference clock input to clkout is
going to go through all the same cells as afalling edge. We would expect to receive CRPR credit
for the entire path. The OCV effect will be zero.

However, thisis somewhat optimistic. While arising and falling edge will run through al of the
same cells and nets, the timing is controlled by different FETs within each cell. The PFETs and
NFETswithin acell are not necessarily identical. In essence, there can be some “cross-cell
variation.” Just because arising edge through acell is at worst case, does not mean afalling edge
will also be at worst case. Therefore alowing the full CRPR credit is really not accurate.

Primetime does not model these “cross-cell variations’ at all. Even if it wanted to, the proper
information does not exist in the libraries for this type of analysis to be done. What Primetime
does offer is asimple on/off switch.

set tim ng_clock_reconvergence_pessi ni sm nor mal
set timng_clock_reconvergence_pessin smsane_transition

SNUGBoston 2002 16 Matthew.D.Weber @ieee.org

Whentheti mi ng_cl ock_reconver gence_pessi m sm variableis set to normal (the default
setting), Primetime conveniently ignores the potential differences between FETs within acell,
and you are given the entire CRPR credit. When the variable is set to same_transition, Primetime
assumes there is no correlation between the FETS, and you get zero CRPR credit in cases where
opposite edges through a cell are being timed against each other. This assumption is overly
pessimistic and can cause many false failures on tests that include opposite edges. Examples are:

1. Paths between negedge and posedge registers.

2. Duty cycle checks.

3. Clock gating checks and other circuitsin clock generation logic.

The static timing engineer must choose (with the library vendor’ s guidance) between being
optimistic, being pessimistic, or writing a bunch of Tcl to manually do the appropriate tests.
Einstimer, by the way, always gives you zero credit for opposite edge transitions. (In other words,
there is no way to be optimistic when running Einstimer.)

10.0 How OCV Analysisimproves silicon performance

Although at first it appears that using on-chip variation analysis steals a bunch of performance
fromyou, | don't think thisis necessarily the case. While many ASIC vendors do not require you
to run OCV analysis, this does not mean that they have figured out how to build chips with zero
variation. If the vendor does not have a manufacturing test that can catch the failures, or if they
are not willing to accept the resulting yield loss, they must still account for on-chip variations
during static timing analysis. It may be done through padding the setup and hold margins of the
flops, requiring extra set_clock_uncertainty even after the clocks are placed and routed, or
requiring XXps of positive slack for timing signoff. Any of these methods effectively penalize
ALL of the pathsin your design. In the setup example above, if the vendor wanted us to increase
the clock uncertainy to 200ps instead of running OCV we would still have afailing path. Instead
of atape-out on Friday, we would be working the weekend.

By running on-chip variation analysis, and more specifically the CRPR algorithm, we are able to
stuff an extra hundred picoseconds of logic into paths that are contained in a common branch of
the clock tree. By modeling the on-chip variation effect more accurately, we are able to get more
performance out of the design.

SNUGBoston 2002 17 Matthew.D.Weber @ieee.org

11.0 Conclusionsand Recommendations

Most static timing analysis done today does not include on-chip variation analysis. In fact, |

know of only two ASIC vendors who require this type of analysis. However, as clock frequencies
continue to increase and process geometries continue to decrease, | believe on-chip variation
anaysis will become more common.

This paper has shown how OCV analysisis run, what the reports look like in Primetime, and
how OCV analysis has the potential to increase the performance that we get from our silicon.

For those who will be running OCV analysis on their next static timing project, | have four
suggestions:

1. Keep this paper close at hand.

2. Turnon on-chip variation mode as soon as you have areal clock treein the design,
perhaps even before. The last week before tape-out isNOT the time to find out that you
have several hundred failing paths.

3. Don't forget to turn on CRPR.

4. Send mean e-mail if you need any help.

With these suggestions, | hope you can avoid “ Wasting away again in static-timing-ville.”
12.0 References

[1] A. Cheng and P. Zimmer, “ Working with DDRs in PrimeTime”, SNUG San Jose 2002
[] Thereisaso alot of good information in the PrimeTime user’ s manual

SNUGBoston 2002 18 Matthew.D.Weber @ieee.org

13.0 Appendix A —Tcl codefor timing constraints

Load lib

setogearéhiggyh ". [ltechlibs/$LI BRARY/ $VERSI OV synt hesi s/ synopsys ./sv"
set SYN_LIB {$LI BRARY}

set link_path "* $LI BRARY. db"

Load design

read_veril og sle_spi4_tx_block.v
I'ink_design sle_spi4_tx_block
current _design sle_spi4_tx_block

Set environnent

set_wire_|l oad_nodel -library $LIBRARY -nanme $W RELOAD MODEL
set_w re_| oad_node top

set auto_wi re_|l oad_sel ection {fal se}

set _operating_conditions -anal ysis_type bc_wc

Cet parasitics
source sle_spi4_tx_block.cap.tc
source sle_spi4_tx_block.rc.tc

Create O ocks

set core_freq 266

create_clock -period [expr 1000.0 / $core_freq] -name clk_core [get_ports clk_core]
set _clock_uncertainty 0.10 clk_core

set _propagated_cl ock clk_core

create_clock -period 10.0 -nane xi _tsclk [get_ports xi_tsclKk]
set _clock_uncertainty 0.10 xi_tsclk
set _propagated_cl ock xi _tsclk

create_clock -period 2.5 -nane xi _xtalclk [get_ports xi_xtalclK]
set _clock_uncertainty 0.10 xi_xtalclk
set _propagated_cl ock xi _xtalclk

create_generated_cl ock -nane cl k_200 -source [get_ports xi_xtalclk] -divide_by 2 [get_pins
cl k_rst_400/cl k_2nd_di vby2_reg/ L2]
set _propagat ed_cl ock cl k_200

clk_core is asynch to the other clocks
set _false_path -fromclk_core -to [remove_fromcollection [all_clocks] [get_clocks "clk_core"]]
set _false_path -from[renmove_fromcollection [all_clocks] [get_clocks "clk_core"]] -to clk_core

Inputs and Qutputs are nostly clk_core

set _input_delay 1.0 -clock clk_core [remove_fromcollection [all_inputs] [get_ports "clk_core

xi _tsclk xi_xtalclk"]]

set _out put_del ay [expr 1000.0 / $core_freq — 1.0] -clock clk_core [remve_fromcollection

[all _outputs] [get_ports "xo_tdclk xo_tdat* xo_tctl"]]

group_path -nane outputs -to [renmove_fromcollection [all_outputs] [get_ports "xo_tdcl k xo_tdat*
xo_tctl"]]

These are the exceptions
set _input_delay 1.0 -clock xi_tsclk [get_ports xi_tstat*]

By default, outputs are clk_core. This bus, however is source synchronous DDR

We will tine it with two virtual clocks as described by Paul Zi mrer and Andrew Cheng's
SNUG San Jose 2002 paper

source setup_ddr_out_timng.tc

_setup_ddr_out_timng [list xo_tdat* xo_tctl] xo_tdclk xi_xtalclk 0.280 0.280

Ready to generate reports

SNUGBoston 2002 19 Matthew.D.Weber @ieee.org

14.0 Appendix B — Tcl code for DDR output timing constraints
HHHHHHHHH B B A A AR A AR B H B H B H AR R R R R R

#

Copyright 2002 by Silicon Logic Engineering. Al rights reserved

#

BHHHH R R R

#

File name : setup_ddr_out _timng.tc
Aut hor . Matt Weber

Revi sion o Bl d$

#

BHHHH R R R

Description : This Tcl procedure sets up DDR output tinmng
constraints simlar to the virtual clock approach
suggested in Paul Zi nrer and Andrew Cheng's
SNUG San Jose 2002 paper

The inputs are as follows:
_data_output : The name of the data output pin or bus
_clk_output : The nane of the clock output pin
_source_input : The name of the reference clock
which creates the clock and data outputs
_maxskew0 : Maxi numtine that data_output can change
before transition on cl k_out put
_maxskewl : Maxi numtine that data_output can change
after transition on cl k_out put
An assunption is nade that the data output is
created by a mux with pin nanes DO, D1, and SD
| MPORTANT : The script is not conplete yet. To fully
tine these outputs several things need to checked
1. Skew between clock and data outputs
2. Duty cycle of clock output
3. Jitter of data outputs. Since this is DDR duty
cycle on the data outputs looks like jitter
At this time only the first check is being done

HHEHHFHFEHFEH TR

g g g g g g g g)
LR e e e e e e o b e e e o e b b e e o a

proc _setup_ddr_out_timng {_data_output _clk_output _source_input _nmaxskew0 _nmaxskewl} {

CGet all the attibutes fromthe source clock so we can nmake good copies

set _source_period [get_attribute [get_clocks $_source_input] peri od]

set _source_waveformjunk [split [get_attribute [get_clocks $_source_input] wavefornmi " {}"]

set _source_waveform"[lindex $_source_waveformjunk 1] [lindex $_source_waveformjunk 2]"

set _source_setup_uncertainty [get_attribute [get_clocks $_source_input] setup_uncertainty]

set _source_hold_uncertainty [get_attribute [get_clocks $_source_input] hol d_uncertainty]

Then get the rising edge latency fromsource_input to cl k_out put

set _path [get_tim ng_paths -from[get_ports $_source_input] -to [get_ports $_clk_output] -
del ay max_ri se]

set _rise_latency [get_attribute $_path arrival]

Then the falling edge |latency fromsource_input to cl k_out put

set _path [get_tim ng_paths -from[get_ports $_source_input] -to [get_ports $_clk_output] -
del ay max_fall]

set _fall_latency [get_attribute $_path arrival]

Create a virtual clock to use for conparisions to rising edge of clk_out put

set poscl kname [format %_poscl kout $_cl k_out put]

create_clock -period $_source_period -waveform $_source_wavef orm - name $poscl kname

set_clock_|latency $_rise_latency -rise -source [get_cl ocks $poscl knane]

set_clock_latency $_fall_latency -fall -source [get_cl ocks $poscl knane]

set _clock_uncertainty -setup $_source_setup_uncertainty $poscl knane

set _cl ock_uncertainty -hold $_source_hol d_uncertainty $poscl knane

Create another virtual clock to use for conparisions to falling edge of clk_out put

set negcl kname [fornat %_negcl kout $_cl k_out put]

create_clock -period $_source_period -waveform $_source_wavef orm - nane $negcl knane

set_clock_latency $_rise_latency -rise -source [get_cl ocks $negcl knane]

set_clock_|latency $_fall _latency -fall -source [get_cl ocks $negcl knane]

set _clock_uncertainty -setup $_source_setup_uncertainty $negcl knane

set _clock_uncertainty -hold $_source_hol d_uncertainty $negcl kname

Set output delays for data_output.

_maxskewO, the maxi mum anmount of tinme that the data output can change before the cl ock output

is really a hold test

set _out put _del ay $_naxskew0 -cl ock $poscl kname [get_ports $_data_output] -mn

set _out put _del ay $_naxskew0 -cl ock $negcl kname [get_ports $_data_output] -mn -add_del ay -
cl ock_fal

SNUGBoston 2002 20 Matthew.D.Weber @ieee.org

_maxskewl, the maxi mum anount of time that the data output can change after the cl ock output
is really a setup test
set _out put_del ay [expr $_source_period/ 2.0 - $_maxskewl] -clock $poscl knane [get _ports
$_data_out put] -nax -add_del ay
set _out put _delay [expr $_source_period/ 2.0 - $_naxskewl] -clock $negcl knane [get_ports
$_data_output] -max -add_del ay -cl ock_fal
For DDR outputs built wth posedge/ negedge regs followed by a nux, assune data from
the DO side of the nux gets captured by poscl kout virtual clock, and data fromthe
D1 side gets captured by the negcl kout virtual clock
The | oops here seemto be pretty slow Should |ook for a better way. O hardcode the
rel avant gate nanes so we don’'t have to do this search for them
foreach_in_collection tenp_output [get_ports $_data_output] {
foreach_in_collection tenp_path [get_tinming_paths -to [get_ports $tenp_output] -delay
max_rise] {
foreach_in_collection tenp_point [get_attribute $tenp_path points] {
set object [get_attribute $tenp_point object]
set point_nanme [get_attribute $object full_nane]
if {[string match */ DO $poi nt _nanme] } {
echo "_setup_ddr_out_timng is setting fal se_path from $poi nt_nanme to virtual clock
$negcl kname for setup checks"
set _fal se_path -setup -through [get_pins $point_nane] -to [get_cl ocks $negcl knane]

}
if {[string match */ D1 $poi nt_name] } {
echo "_setup_ddr_out_timng is setting false_path from $poi nt_nanme to virtual clock
$poscl kname for setup checks"
set _fal se_path -setup -through [get_pins $point_nanme] -to [get_clocks $poscl knane]

}

SNUGBoston 2002 21 Matthew.D.Weber @ieee.org

