Fast Bit-Accurate C++ Datatypes for Functional System Verification and Synthesis

Andres Takach Peter Gutberlet

Mentor Graphics Corporation
8005 S.W. Boeckman Rd
Wilsonville, OR 97070 USA

andres_takach@mentor.com

Abstract

Fast bit-accurate simulation is essential for the
functional verification of complex algorithms used in
modern digital hardware designs. In this paper, we present
the design of C++ templatized classes that model
arbitrary-length bit-accurate integer and fixed-point
arithmetic. The bit-accurate types *have been designed to
have well defined semantics for hardware synthesis. DSP
algorithms written using the new bit-accurate integer and
fixed-point types are shown to have 3x to 200x faster
runtimes than the same algorithms written with the
corresponding SystemC bit-accurate types.

1. Introduction

An important step in the implementation of DSP
hardware or software is refining the algorithm from using
floating-point arithmetic to fixed-point or integer
arithmetic. This process is typically performed in C or
MATLAB. In order to model bit-accurate arithmetic,
designers often use C bit fields or C integer types in
combination with masking or shifting. Another approach is
to use the bit-accurate data types that are provided as part
of the SystemC [3] language. The SystemC data types
encapsulate bit-accurate arithmetic for integers and fixed-
point using C++ templatized classes. The classes may be
used as part of a complete SystemC verification
environment (for example for TLM Modeling) or used in a
plain C++ algorithmic description. The data type subset of
SystemC is functionally orthogonal to other core features
of SystemC that are required to model concurrency,
structure, timing, etc.

Functional simulation speed is becoming increasingly
important in system-level design. Simulation speed
impacts the development time of the system-level
functional specification since a number of iterations may
be necessary before the specification converges to the

1. The datatypes are part of the Algorithmic C™ Datatypes
and are freely available at:
http://www.mentor.com/products/esl/high_level_synthesis/ac_datatypes.

Mentor Graphics Corporation
8005 S.W. Boeckman Rd
Wilsonville, OR 97070 USA

peter_gutberlet@mentor.com

Simon Waters

Mentor Graphics Corporation
8005 S.W. Boeckman Rd
Wilsonville, OR 97070 USA

simon_waters@mentor.com

desired behavior. Functional testing needs to be as
comprehensive as possible and ideally should include
modeling of the finite precision computation that will be
used the implementation. Because of long simulation
times, finite precision computation is commonly not
modeled from the start. Instead, either plain C integers or
floating-point arithmetic is used in the earlier versions of
an algorithm block. Finite-precision models are often
coded later and do not receive the same level of testing as
the models using C integers and floating point types. As a
consequence, some design problems may not be
discovered until later, during hardware emulation or FPGA
prototyping of the design. As the results of this paper show,
modeling of finite precision using our fixed-point
implementation is actually significantly faster than using
floating-point precision.

SystemC has received much attention in the research
community for its capabilities to model systems at a higher
level of abstraction [4] [5] and as a vehicle for exploring
new ideas in system- level specification and verification.
Much of the focus has been concentrated on analyzing,
improving or extending the kernel of SystemC and adding
new verification capabilities to it. For example, Perez et al.
[6] improve the performance of the SystemC engine by
reducing the number of process wake-up calls. Siegmund
et al. [7] propose an extension to SystemC to enable the
separation of the specification of communication and
functionality.

The definition of the formal semantics of the SystemC
language has also been a topic of considerable interest
[8] [9] [10] . The datatype subset of SystemC, on the other
hand, has received little attention. SystemC datatypes are
well known and widely used for system-level and hardware
verification. The datatypes include arbitrary-length bit-
accurate types for integers, fixed-point and bit and logic
vectors. The static nature of the precision makes it well-
suited for specifying hardware. The implementation is
open (sources are public) and can be compiled with non-
proprietary C++ compilers.

While the current set of data types provided with
SystemC are widely used for verification of algorithms, a

number of issues are still of concern to the user

community:

e Long runtimes: runtimes can be anywhere from 5x to
200x slower than using C types directly.

« Non-unified types: two versions for bit-accurate integer
types exist: the “fast” but limited to 64 bits of precision
(sc_int/sc_uint), and the arbitrary precision integer type
(sc_bigint/sc_biguint) that is much slower. The two
datatypes are not equivalent even for bitwidths where the
64-bit limit should not matter. For example, the
comparison (sc_uint<6>) 1 > (sc_int<6>) -1 returns
false, while the same comparison using sc_bigint/
sc_biguint returns true. There are also two versions of
the fixed-point type: the “fast” but limited to 53 bits
(precision of a typical C++ double) called sc_fixed_fast/
sc_ufixed_fast, and the arbitrary precision version
sc_fixed/sc_ufixed.

« Imprecise definition: the definition of the data types is
not formally defined, but rather it is implicit in the
implementation. Improving the current implementation
is difficult without a very precise definition of all
operators and methods. There is also some
inconsistencies among the different datatypes that need
to be resolved.

e Lack of comprehensive verification: much of the
functionality of SystemC has been tested by the user
community. Such informal testing is slow, costly and not
comprehensive. For instance, despite the widespread
usage of SystemC, problems such as incorrect
simulation are still being reported for its datatypes. A
more comprehensive testing is essential to allow
improvements to be made to the implementation without
the risk of introducing new problems.

The unification of the limited and the arbitrary precision
datatypes is essential for a hardware or system description
language. Arbitrary precision types have clear advantages
over limited precision types. Because arbitrary precision
types don’t loose precision for arithmetic operations, their
semantics are cleaner and more intuitive than the semantics
of limited precision types. Arbitrary precision is also
desirable when defining parametrized C source IP where
the functionality should be correct for all input bit widths,
rather than have an artificial limit that then needs to be
quantified and documented.

Efficient packages for arbitrary precision integer
arithmetic are publicly available. An excellent example of
such a package is GNU MP [9] which provides arbitrary
dynamic precision with a granularity of C integers (32 bits)
or long long integers (64 bits). The target applications are
mathematical problems requiring very large bitwidths and
therefore the package is optimized for handling very large
bitwidths efficiently. It is not optimized for bitwidths used

in typical hardware or embedded systems and in fact the
dynamic nature of its precision is not suitable for hardware
or embedded software specifications.

In this paper, we present arbitrary-length, bit-accurate
integer and fixed-point datatypes that are 3x to 200x faster
than the equivalent datatypes in SystemC and come close
in performance to the built-in C integer datatypes. The
speed advantage is achieved with regular C++ compilers
and is the result of careful definition of the semantics and
an optimized implementation C++ implementation that
relies on template specialization to provide efficient
implementations for all operators.

The definition of the semantics of the datatype
described here is meant to be easily synthesizable. For
example, all operators (including the left shift) produce
results that have statically determinable bit widths. Once
the semantics are defined, a combination of equivalence
checking and simulation is used to verify that the
implementation accurately reflects the defined semantics
for a range of input bitwidth combinations.

The datatype is implemented as a templatized class that
could be used instead of the SystemC datatypes sc_int/
sc_uint or sc_bigint/sc_biguint in pure C++ or SystemC
specifications.

Section 2 introduces the requirements on the behavior
of our bit-accurate datatypes. Section 3 describes the ideas
used to obtain a fast implementation. Section 4 briefly
describes the methodology to verify the correctness of the
implementation. Section 5 present runtime comparisons to
built-in C++ datatypes and SystemC integer datatypes
sc_int and sc_bigint obtained with a small benchmark
example and for a set of algorithms.

2. Semantic Definition
The most important step in developing a datatype is to

define the desired semantics. The criteria used to define the

semantics are the following:

» The datatype should be intuitive to use: in general this
means that operations should return full precision
whenever possible rather than be truncated by limits due
to implementation details. A consequence of such a
semantic is that arithmetic properties are preserved, for
example (a*b)*c == a*(b*c).

* The datatype should have clean hardware synthesis
semantics: the bitwidth of the return value for operations
should be statically derivable from the bitwidths of the
operands.

e The datatype should be runtime efficient: how
operations are defined may affect runtime. The
implementation should not require dynamic memory
allocation/deallocation (new/delete). Operations should
be statically determinable to facilitate compiler

optimizations such as function inlining.

The last two requirements are consistent. Making the
bitwidth of results be statically determinable helps both
software compilers and synthesis tools. For software
compilers, what is statically determinable is confined to
expressions on constants and template arguments. For most
operations, the bitwidth for the result that guarantees no
loss of precision is a simple function on the bitwidths of
the operands. For example, for multiplication, the bitwidth
of the result involves adding the bitwidths of the two
operands.

The shift left operation is an interesting case that
presents a challenge to one or more of our goals. The shift
left operation a << b can be viewed as either a bitwise
operation or an arithmetic operation that does not loose
precision:
 Bitwise: the result bitwidth is the bitwidth of the first

operand, i.e., a << b = (a*2°) mod 20Width(@) for b >0
« Arithmetic: no loss of precision, i.e. a << b = a*<2° for

b=>0.

In many cases the arithmetic view might be more
intuitive. However, while the bitwidth of the return type
can be derived from the bitwidth of the operands, it is
impractical unless the bitwidth of b is very small. SystemC
takes the arithmetic view which has negative consequences
for both runtime efficiency as well as synthesis semantics.
For example, the bitwidth of (a<<b)*c is not statically
determinable by a compiler and thus the techniques
described in Section 3 for efficient runtimes cannot be
applied. In addition, dynamic memory allocation is
required, which further degrades runtime. Synthesis, on the
other hand, can only efficiently handle such a situation if it
can determine that b is a constant or a small range.

3. Implementation

The bit-accurate integer and fixed-point datatypes are
implemented as templatized classes, named ac_int and
ac_fixed. The ac_int class takes two parameters as shown
in Figure 1. The first parameter specifies the bitwidth of
the integer and the second parameter specifies whether the
integer is signed or unsigned. For example:

ac_int<4,true> x; // 4-bit signed integer
ac_int<73,false> y; // 73-bit unsigned
integer.

The ac_fixed class takes 5 template parameters:

ac_fixed<int W,int I,int S,ac_g_mode Q,ac_o_mode
0>

where S defines whether the type is signed or unsigned.
The remaining parameters are consistent with SystemC’s
fixed-point datatypes. The Q and O template arguments
define the quantization and overflow modes and default
truncation and wrap respectively (equivalent to SC_TRN

and SC_WRAP in SystemC). For example:

ac_fixed<5,3,true> x; // bbb.bb
ac_fixed<5,-2,true> y; // .xxbbbbbb

The ac_int and ac_fixed classes are derived from class
iv (iv stands for integer vector) that implements signed
integer datatypes of bitwidths multiples of 32. Figure 1
also shows the template member function for the
multiplication operator for ac_int. Note that the bitwidth
and signedness of the result is a function of the class
template parameters W and S and the member function
template parameters W2 and S2.

template<int W, bool S=true>
class ac_int : private ac::iv<(W+31+1S)/32> {
#pragma builtin
enum {N=(W+31+1S)/32};
//

public:
template<int W2, bool S2>
ac_int<W+W2,S]|S2> operator *(const ac_int<w2,S2>
&op2) const {
ac_int<W+W2, S||S2> r;
mult(op2, r);
return r;

}
template<int W2, bool S2>
ac_int &operator *=(const ac_int<W2,S2> &op2) {
ac: iv<N> r;
mult(op2, r);
ac::i1v<N>::operator=(r);
bit_adjust();
return *this;

Figure 1: Fragment of the ac_int class

For example, multiplying an ac_int<36,true> (base
class is iv<2>) by ac_int<14,false> (base class is iv<1>)
produces a result which is ac_int<51,true> (base class is
iv<2>). The actual multiplication is performed by the call
mult(op2, r) that in turn calls the member function mult of
the base class: iv<2>::mult(const iv<1> &op2, iv<2>
&r). The base class iv does not know the exact bitwidth of
the operands except that they can be represented by 64-bit
signed and 32-bit signed integers respectively. The
argument for the return value r provides the template
parameter for mult so that an iv<2> rather than an iv<3>
result is computed.

Operations where loss of precision is possible, for
example operations involving assignment, require the call
to the private member function bit_adjust that adjusts the
result computed by the base class iv to take into account the
actual bitwidth of the number. For example, Figure 1
shows the implementation for the member function for the
multiply assign operator “*=". If the left operand is an
ac_int<14, false> and the right operand is an

ac_int<36,true>, the multiplication is performed with the
member iv<1>::mult(const iv<2> &op2, iv<l> &I),
resulting in a 32-bit signed value that needs to be adjusted
to a 14-bit unsigned number. Note that all bitwidths are
statically determinable by the C++ compiler based on
template parameters. Also no dynamic memory allocation
or deallocation is used.

Template specializations [1] [2] are used to provide
implementations that are as efficient as possible for smaller
bitwidths, as they are used extensively in hardware design.
Template specialization allows for alternative
implementations for particular template parameter values
so that they are as efficient as possible. Figure 2 shows the
template specializations for iv_mult, a function called by
member function iv::mult. For instance, iv<3>::mult(const
iv<2> &op2, iv<h> &r) would call iv_mult with
parameters N1=3, N2=2, Nr=5. The details for the iv_mult
function are not shown, but it involves behavior consisting
of two nested loops to perform the multiplication using the
built-in C++ type long long. Figure 2 also shows two
template specializations that provide more efficient
implementations for two very commonly occurring cases.

complexity (at least in gcc) appears to be measured before
some of the optimizations that would simplify the function
are performed.

template<int N1, int N2, int Nr>
static void iv_mult(const int *opl, const int *op2,
int *r)
iT(N1==1 && N2==1) {
if(Nr==1)
r[0] = op1[0] * op2[0];
else
iv_assign_int64<2>(r, ((long long) opl[0]) *
((l}ong long) op2[01));
else {

// general function for arbitrary N1, N2, Nr
using loops
/...

}
}

template<int N1, int N2, int Nr>
static void iv_mult(const int *opl, const int
*op2, int *r) {

// general function for arbitrary N1, N2, Nr
using loops

/...

3
// template specialization for N1=1, N2=2, Nr=1
template<> inline void iv_mult<1,1,1>(const int
*opl, const int *op2, int *r) {

r[0] = op1[0] * op2[0];

// template specialization for N1=1, N2=2, Nr=2
template<> inline void iv_mult<1,1,2>(const int
*opl, const int *op2, int *r)

iv_assign_int64<2>(r, ((long long) opl[0]) *
(}(long long) op2[0]));

Figure 2: Using template specialization for better
runtime performance

Template specialization leads to faster executables than
using the non-specialized function even if the code of the
non-specialized function is written in a way that would
allow a C++ compiler to easily generate equivalent code.
For example, instead of specialized functions, the
exceptions could be coded directly as shown in Figure 3.

Analysis of the generated assembly code indicates that
the alternative implementation of Figure 3 is not inlined.
Whether function inlining occurs depends on a measure of
the complexity of the function to be inlined. That

Figure 3: Alternative to using template specialization

4. Vferification

Verification of the correctness of the implementation
was done by first synthesizing the C models for each
operator/method for many parameter combinations using
Catapult C SynthesisTM [12]. The RTL generated by
synthesis is then checked against generic VHDL golden
references using a combination of equivalent checking and
simulation.

5. Results

The main focus of this section is to quantify the runtime
performance of ac_ int and ac fixed against the
corresponding SystemC bit-accurate datatypes.

5.1 Bit-Accurate Integer Types

A small example with arithmetic and shift operations
was written and run with four datatypes: ac_int, sc_bigint,
sc_int and built-in C++ integer types. The example uses a
single integer type int_type which is type defined to any of
the integer type to be benchmarked. The operations
covered here were chosen since they are supported for all
four datatypes to be benchmarked. The runtime results may
also be sensitive to the input data for sc_bigint since some
implementations may provide exceptions for values like 0,
1 and -1 for efficiency at larger bitwidths. Finding a
representative input data set depends on the application.
For the benchmark example, the input set was designed to
avoid having highly skewed data, such as having the most
significant 240 bits of a 256 bit integer be zero for most
input vectors.

void f(int_type x, int_type &y) {
int typew=x*vy; bvv=w> 2;
int_ type u =w-v; U *=v;
u-=y; u>»=3;
u++; U <<= 2;
y=u+tw;

}
main () {
int_type a, b;
for(int 1 =0; i < 3000; i++) {
for(int k=0; k < 3000; k++) {
a*=i; a+=Kk;
b *= k;
f(a, b);

b += 1;

cout << b << endl;

}

Figure 4: Example to benchmark ac_int.

The runtime results are shown in Table 1. All versions
were compiled with the GNU gcc3.4.3 C++ compiler with
the optimization flag set to O3 on a 1700MHz Intel
Pentium-M running linux RedHat9. The main focus of the
comparison is between the runtimes using ac_int and
sc_bigint as they offer comparable arbitrary-length, bit-
accurate functionality. For bitwidths 32 or less, ac_int is
roughly 100 times faster than sc_bigint. As the bitwidth
increases the speed advantage is reduced, but it is still a
factor of roughly three times faster at 256 bits. Much of the
work to optimize runtime in ac_int was focused for smaller
bitwidths since they are heavily used in hardware design. It
is possible to introduce additional template specializations
to further improve bitwidths of 64 and beyond.

Comparing runtimes of ac_int with sc_int leads to less
dramatic results, but it remarkable to see a factor of three to
four speed advantage over sc_int for bitwidths of 32 and
below (the most used bitwidths for hardware designers).
Note that sc_int<64> (or the C++ long long (64 bits)) are
not equivalent to ac_int<64,true> since the computed
results are limited to 64-bits.

Table 1: Comparison of signed ac_int relative to
SystemC signed integer types

. Runtime ~ Speed-up Factor
bit ac int Runtime(type)/Runtime(ac_int)
width —
s) sc_bigint sc_int
8 0.29 103.8 3.72
9 0.30 100.7 3.60
12 0.30 101.0 3.60
16 0.29 104.5 3.72

Table 1: Comparison of signed ac_int relative to
SystemC signed integer types

: Runtime _ Speed-up Factor
bit ac int Runtime(type)/Runtime(ac_int)
width P
) sc_bigint sc_int
32 0.35 108.0 2.97
64 4.22 9.60 Not Equiv
128 9.18 4.97 NA
256 23.7 2.80 NA

The benchmark was also run with native C++ datatypes.
Using the C++ signed char (8 bits) was a factor of 1.16
faster than ac_int<8,true>. Using the C++ signed short (16
bits) was 1.27 faster than ac_int<16,true>. The C++ type
int (32 bits) is not equivalent to ac_int<32,true> since the
results are computed as 32 bit values. The runtime
performance of ac_int is very close to the theoretical limits
given by the underlying C++ datatypes.

Two additional metrics of interest are compilation times
and size of the executable. The compilation time is fairly
unaffected by bitwidth and is roughly 10 times faster for
ac_int than for sc_int or sc_bigint (0.8s compared to 7.5s).
The compilation time of ac_int is only a factor of 1.24
longer than the compilation time of the built-in datatypes.
The size of the executable for sc_int and sc_uint is
unaffected by bitwidth: 732k for sc_int and 673k for
sc_bigint. The size of the executable for the built in
datatypes also is not affected by bitwidth and it was much
smaller at 13.5k. The size of the executable for ac_int was
very close to the size for built in datatypes but grew from
14.1Kk to 18k as the bitwidth grew from 8 to 256.

The speedup of ac_int compared to sc_bigint on actual
designs was consistent with the speedups measured for the
small benchmark. Table 2 shows two designs and the
speedups with respect to sc_bigint. The speedup of ac_int
compared to sc_int for DCT was 17.7 which is actually
quite larger than what it would expected from the small
benchmark. The SQRT design is an integer square root
function.

Table 2: Speed up of ac_int compared to sc_bigint

Design Speed up Factor
DCT (8x8) 119
SQRT (16-bit) 143

5.2 Bit-Accurate Fixed-Point Types
One way to measure how efficient a bit-accurate fixed-
point type is to use a fixed-point variable to model a bit-

accurate integer. Ideally, there should be no overhead. For
instance, an ac_fixed<16,16,true, AC_TRN,AC_WRAP> is
used instead of an ac_int<16,true>.

Table 3 shows a runtime comparison for ac_fixed and
the SystemC fixed-point types sc_fixed and sc_fixed_fast
when used as bit-accurate datatypes for the benchmark
example shown in Figure 4. In this scenario, ac_fixed is
roughly 200x faster than the arbitrary-length datatype
sc_fixed and 56x to 90x faster than the “fast” fixed-point
type sc_fixed_fast (limited to 53 bits). As a comparison,
the runtimes for both float and double (with the appropriate
changes to the code) is 11.2s. The ac_fixed in this case, is
3x to 30x faster than using float or double.

Table 3: Comparison of signed ac_fixed relative
SystemC fixed-point types

bit Runtime ~ Speed-up Factor
: ac_fixed | Runtime(type)/Runtime(ac_fixed)
width
s) sc_fixed sc_fixed_fast
8 0.34 200.3 873
0.36 188.9 84.1
12 0.34 200.0 87.4
16 0.29 232.8 98.9
32 0.51 132.0 55.9
64 44 16.0 Not Equiv
128 9.6 10.9 NA
256 25.3 7.9 NA

The speedups of ac_fixed compared to sc_fixed for two
small designs is shown in Table 4. The SQRT design is a
fixed-point square root function.

Table 4: Speedup of ac_fixed compared to sc_fixed

Design Speedup factor
CORDIC (cos) 34
SQRT (16-hit) 141

6. Conclusions

The design and verification of fast arbitrary-length bit-
accurate integer and fixed-point datatypes was presented.
The datatypes are implemented as a C++ template class
and can be used in C++ or SystemC code. Results show
that the ac_int and ac_fixed datatypes outperform the
corresponding SystemC’s datatypes. For bitwidths most
commonly used for hardware designs (32 bit and below),
ac_int is roughly 100 times faster than sc_bigint, three to

four times faster than SystemC’s limited-precision “fast”
integer sc_int and comes very close to C++ built-in integer
datatypes. Likewise, the ac_fixed type is roughly 200 times
faster than sc_fixed on bitwidths smaller than 32 bits.

The Compile times of C++ code using ac_int or
ac_fixed are a factor of 10 faster than using SystemC
datatypes. The ac_int and ac_fixed datatypes also provided
an advantage in terms of executable size over SystemC
integer datatypes.

Both the ac_int and ac_fixed datatypes are synthesized
by Catapult C Synthesis™ [12] , a synthesis tool that takes
algorithmic specifications in ANSI C++ and generates
optimized RTL for either ASIC and FPGA technologies.

7. References

[1] Stroustrup, Bjarne. The C++ Programming Language. 3rd edi-
tion. Addison-Wesley.

[2] Programming Languages - C++. ISO/IEC 14882:1998(E).
First edition 1998-09-01. American National Standards Insti-
tute.

[3] SystemC Language Reference Manual 2.0.1, http://www.sys-
temc.org.

[4] Grotker, T., Liao Stan, Martin, G. and Swan, S. “System
Design with SystemC.” Kluwer Academic Publishers. 2002

[5] Ghosh, A., Tjiang, S., Chandra, R. “System Modeling with
SystemC . " ASIC, 2001. Proceedings. 4th International Con-
ference on , 23-25 Oct. 2001. Pages:18 - 20

[6] Perez, D.G., Mouchard, G. and Temam, O. “A new optimized
implementation of the SystemC engine using acyclic schedul-
ing.” Design, Automation and Test in Europe Conference,
2004. Proceedings, Feb. 2004 Pages: 552 - 557.

[7] Siegmund, R. and Muller, D. “SystemCSV: an extension of
SystemC for mixed multi-level communication modeling and
interface-based system design.” Design, Automation and Test
in Europe Conference, 2001. Proceedings, March 2001.
Pages:26 - 32.

[8] Salem, A. “Formal semantics of synchronous SystemC.”
Design, Automation and Test in Europe Conference, 2003,
Pages: 376 - 381.

[9] Mueller, W., Ruf, J., Hoffmann, D., Gerlach, J., Kropf, T. and
Rosenstiehl, W. “The simulation semantics of SystemC.”

Design, Automation and Test in Europe, 2001. Proceedings,
March 2001. Pages: 64 - 70

[10] Man, K.L. “SystemC/sup FL/: formalization of SystemC.”
Electrotechnical Conference, 2004. MELECON 2004. Pro-
ceedings of the 12th IEEE Mediterranean, 12-15 May 2004.
Pages:201 - 204.

[11] GNU MP, http://gnu.org/software/gnp
[12] Mentor Graphics Corporation, http://www.mentor.com/

