
Synplicity Synplify -- FPGA Synthesis

Bug List

5/18/01

Bill Lenihan
Raytheon Systems Co. (formerly Hughes Aircraft Company)
2000 E. Imperial Hwy., R2-V514
El Segundo, CA 90245
310-334-8324
wlenihan@west.raytheon.com

Contact the author for testcases.

date case # bug # Problem Solution / Workaround
9-20-00 22529 10379 I want to pass initial values into a Xilinx

Virtex Block RAM, essentially
making it a ROM instead of a RAM.

The code only seems to pass the
INIT_00 value, and will not pass
the other 15 INIT values (01 to 0F), even
if I use backslash, comma,
semicolon, etc., as a line extender.

If I put the entire synthesis directive on
one line it will pass all the values to the
edif netlist, but then the code becomes
unreadable. What is the correct way to
extend a synthesis directive over more than
1 line?

This is a known bug in the Synplify
software.

In order to use the xc_props attribute or
the parameters, you need to have the
arguments all on one line.

9-25-00 22726 16434 I'm synthesizing a design into virtex-E.
One of my outputs is an LVDS signal (I
assign in scope).
I notice in the EDIF netlist produced that
the output is assigned w/ an OBUF_LVDS, but
it is still a single-ended signal, not the
differential pair (P & N sides) that LVDS
should have. Will this be fixed in a future

This is a known issue with synplicity. We
currently have a bug open on it.

Attached is the example to instantiate
LVDS.

date case # bug # Problem Solution / Workaround
release? If so, is there a Bug number
assigned to it?

9-19-00 22438 22522 QUESTION:

I know how to set the default clock
frequency for a specific project: after I
establish the project I go to
 Project
 Implementation Options
 Global Constraints
 Frequency (Mhz) = ____

But how do I establish a global default
frequency for every project, so that it's
there automatically. (i.e., right now,
every new project has default frequency = 0
Mhz (but uses 1 Mhz as default in timing
analysis!), but I want them all to start w/
a default frequency of 100 Mhz). How can I
set that?

As of now the default frequency for
Synplify is 0 MHz. It can not be changed to
100 MHz as a default. We have filed an
enhancement bug on this issue.

9-19-00 22438 N/A I thought the top-level design to compile
was the one at the bottom of the project's
verilog folder. But sometimes Synplify
compiles another design in the hdl file
list -- one that isn't at the bottom. How
can I force Synplify to synthesize the
design I want?

For verilog, top level module does not
necessarily have to be at the bottom
of the project's verilog folder.
If you want to have a particular module as
a top level module, please do
the following:

In synplify project window, click on
implementation options and you will see a
verilog tab. If you click on the verilog
tab, you will see a Top Level Module
window. Please type the module name in it
and run synplify. Synplify will use that
module as a top level and will select
verilog files from your project
accordingly.

10-06-00 23323 23481 The synthesis pragma:
/* synthesis xc_map="lut" */
does not always work. Sometimes Synplify
maps the logic into other resources like
MUXF5/6. Since one leg of the MUXF6 must be

put the pragma
/* synthesis syn_keep = 1 */
on output wires from xc_map="lut"
components.

date case # bug # Problem Solution / Workaround
fed by the MUXF5 in the same slice, RLOCs
will sometimes fail with this mapping.
[RLOCs are often used in conjunction to
direct the mapping.]

Synplify must map to LUTs when encountering
/* synthesis xc_map="lut" */

04-04-01 31615 31637 See code below (uncomment each assign
statement, one at a time, and try
synthesizing). Why does the Exclusive-NOR
(a ~^ b) pass, but expressions
involving the NAND (a ~& b) and NOR (a ~|
b) operations fail in Synplify? Is
this a temporary oversight in Synplify, or
a permanent part of the
un-synthesizable subset of Verilog?

module gates (a, b, gate1);
input a, b;
output gate1;
//assign gate1 = a & b;
//assign gate1 = a | b;
//assign gate1 = a ^ b;
//assign gate1 = a ~& b; // FAILS
//assign gate1 = a ~| b; // FAILS
//assign gate1 = a ~^ b;
//assign gate1 = ~(a & b);
//assign gate1 = ~(a | b);
//assign gate1 = ~(a ^ b);
endmodule

You have found a bug in the Verilog
compiler. I have already submitted
bug#31637 to address this issue. To answer
your question, it is a temporary
oversight.

Regards, David
Synplicity CAE

