Synplicity Synplify -- FPGA Synthesis
Wish List
5/18/01

Bi Il Lenihan

Rayt heon Systens Co. (formerly Hughes Aircraft Conpany)
2000 E. lnperial Hwy., R2-V514

El Segundo, CA 90245

310-334-8324

w eni han@west . rayt heon. com

Unl ess ot herw se not ed:
Target technology is Xilinx Virtex and derivatives;
Source code | anguage is Veril og.

req # Feat ure

1 When there is nore than one verilog nodules in the list of files read
into the project's source code directory -- users need an easy &
reliable way to pick the top | evel design to be synthesized.
Supposedly the file at the bottomof the list is the top |l evel, but
I'"ve found that sonetimes dragging the file | want to the bottom
isn't enough, nor is clicking on the "change result file (edif)"
button. The last resort is going into the "Project -- |nplenentation
ptions -- Inplenentation Results -- Result File Nanme", but this is
too cunmbersone. Why can't dragging the right file to the bottom be
enough to reliably declare the top level to be synthesized?

2 It's easy to pick the target technology with the "change target”
button, but when the user instantiates device-specific macros (i.e.,
clock DLLs or Block RAMin Xilinx Virtex), they have to go to "add
source" and traverse up & down their directory structure to grab the
right technology file from C \synplicity\synplify\lib\xilinx

Wiy can't the synthesis tool just knowto look in the right file if
it encounters such macros? Wy does the user have to read in a renote
file that is already "under the hood" of Synplify?

3 It seens that the only way to control the "replicate logic" feature
is to set the Fanout Guide in the Inplementation Options. |Is there
anot her way? Does the user have any control over the "w rel oad nodel "
if the synthesis timng prediction doesn't match the actual P&R too
timng results? Can the user control the 'replicability’ of one part
of the design separate fromother parts of the design?

4 | want to create a large ROM by inference using a case statenent and
direct Synplify to inplenent it using the Block RAM's) (not LUTs or
other CLB logic). i.e., the pragm

/* synthesis syn_ronmstyle = "block_rom */
woul d work for Xilinx, as well as Altera.

[Note: since Xilinx BRAM is synchronous, the always bl ock surroundi ng
the case statenent would fire on the posedge of clock, not the
address.]

See case # 24086.
5 Can a synthesis pragna equivalent to
/* synthesis xc_map="lut" */

req #

Feat ure

10

be made that will work for CPLD nacrocells? i.e.,
/* synthesis xc_map="macrocel | " */
See case # 23323.

We often have HDL-based IP that is created by other groups wthin our
conpany. Sonetimes this IPis targeted to other FPGA Synthesis tools
(i.e., Synopsys or Exenplar), including the use of synthesis
pragmas/directives in the code. Such code will produce non-optinma

(or in sone cases useless) results if read into Synplify in the HDL
format, since Synopsys or Exenplar pragnmas are different than
Synplicity.

If Synplify could read in EDIF netlists as well as Verilog & VHDL
then the I P owners could synthesize using their tool and deliver
their 1P as EDIF netlists without their customers having to deal with
i nconpati bl e synthesis pragnas/directives.

| need to create a fast, N-bit-wide bi-directional bus in sone of ny
FPGA designs. By 'fast' | nean not only |aunching data-out &
capturing data-in delays (small prop delay frompad to data
registers), but also fast in turning the bus around from read-to-

wite or wite-to-read, preferably in 1 clock cycle (i.e., | need
very small prop delay in tri-state control).
To neet this requirement, | need the N-bit data-in registers, the N

bit data-out registers, and the N-bit tri-state control registers to
all be pushed into the I/Ocells of the FPGA. This is easy to do with
the N-bit data-in & data-out registers, but invariably the N-bit tri-
state control register is optimzed down to 1 bit (since all Nbits
are logically the sane) and the register that produces this 1 bit
nmust be in the core logic not the I/Ocells. This sl ows down the
turnaround of the bus and forces ne to insert wait states in the
controll er, degrading performance

W need a way to keep an N-bit tri-state control register even if all
N-bits are logically the sane.

Help files / docunentation seens inconplete when it cones to
synthesi s pragmas concerning CPLDs. Exanple: for Xilinx devices,
xc_fast & xc_slow are nentioned as being valid for xc4000 only, but |
found that they al so work for xc9500 devices, too

In Xilinx Virtex designs, the Xilinx P& tool takes shift register
structures and tries to fit theminto the SRL macro (shift registers
inmplenented in 1 16-bit-LUT as opposed to regular FDCE's) if
the user wants to inplenent the shift register in regular FDCE s
(i.e., for pipelining purposes to distribute the bits of the register
fromone side of the chip to the other), he nust make sure there is a
reset or preset in place and that it is wired somewhere that won't
get stripped out (dummy pin on I/Oor bit in a bus' nenmory nap).
Since this may be hard to understand and pass al ong as other people
inherit / use the design, it would be better to inplenent in a
synthesis pragma. Can Synplicity & Xilinx work to nake a cl ean
solution to this?

I would like to suggest that the on-line help files should
differentiate nmore clearly that the "block_ram & no_rw _check" are
seperate pragmas and don't need to be concatenated

is now

synthesis syn ranstyle = "regi sters"

req # Feat ure

synthesis syn_ranstyle = "sel ect_rant
synthesis syn_ranstyle = "bl ock_rant
"bl ock_ram & no_rw_check"

synthesis syn_ranstyle

shoul d be:
x V
c |
4 R
0T
0 E
0 X
synthesis syn_ranstyle = "regi sters" X X "RAM fromregisters &
conbi natorial |ogic
synthesis syn_ranstyle = "sel ect_rant X X di stributed RAM vi a
LUT's (default)
synthesis syn_ranstyle = "bl ock_rant X Bl ock RAM with
read/ wite address
conflict resolution
| ogic
synthesis syn_ranstyle = "no_rw_check" X Bl ock RAM with NO
read/ wite address
conflict resolution
| ogi c
11 I'"'mhoping to find sone kind of synthesis pragna to define "origin

points" for multiple subnbdul es (whose innards have al ready been
RLOCed), so that | can pack themclose together. My brute force
alternative is to create one giant subnodule w all the appropriate
RLOCs, but this doesn't lend itself well to (a) easy understandi ng by
ot hers, (b) nodul ar design, heirarchy, etc.,

