
Synplicity Synplify -- FPGA Synthesis

Wish List

5/18/01

Bill Lenihan
Raytheon Systems Co. (formerly Hughes Aircraft Company)
2000 E. Imperial Hwy., R2-V514
El Segundo, CA 90245
310-334-8324
wlenihan@west.raytheon.com

Unless otherwise noted:
Target technology is Xilinx Virtex and derivatives;
Source code language is Verilog.

req # Feature

1 When there is more than one verilog modules in the list of files read
into the project's source code directory -- users need an easy &
reliable way to pick the top level design to be synthesized.
Supposedly the file at the bottom of the list is the top level, but
I've found that sometimes dragging the file I want to the bottom
isn't enough, nor is clicking on the "change result file (edif)"
button. The last resort is going into the "Project -- Implementation
Options -- Implementation Results -- Result File Name", but this is
too cumbersome. Why can't dragging the right file to the bottom be
enough to reliably declare the top level to be synthesized?

2 It's easy to pick the target technology with the "change target"
button, but when the user instantiates device-specific macros (i.e.,
clock DLLs or Block RAM in Xilinx Virtex), they have to go to "add
source" and traverse up & down their directory structure to grab the
right technology file from C:\synplicity\synplify\lib\xilinx.

Why can't the synthesis tool just know to look in the right file if
it encounters such macros? Why does the user have to read in a remote
file that is already "under the hood" of Synplify?

3 It seems that the only way to control the "replicate logic" feature
is to set the Fanout Guide in the Implementation Options. Is there
another way? Does the user have any control over the "wireload model"
if the synthesis timing prediction doesn't match the actual P&R tool
timing results? Can the user control the 'replicability' of one part
of the design separate from other parts of the design?

4 I want to create a large ROM by inference using a case statement and
direct Synplify to implement it using the Block RAM(s) (not LUTs or
other CLB logic). i.e., the pragma

/* synthesis syn_romstyle = "block_rom" */

would work for Xilinx, as well as Altera.

[Note: since Xilinx BRAM is synchronous, the always block surrounding
the case statement would fire on the posedge of clock, not the
address.]

See case # 24086.

5 Can a synthesis pragma equivalent to

/* synthesis xc_map="lut" */

req # Feature

be made that will work for CPLD macrocells? i.e.,

/* synthesis xc_map="macrocell" */

See case # 23323.

6 We often have HDL-based IP that is created by other groups within our
company. Sometimes this IP is targeted to other FPGA Synthesis tools
(i.e., Synopsys or Exemplar), including the use of synthesis
pragmas/directives in the code. Such code will produce non-optimal
(or in some cases useless) results if read into Synplify in the HDL
format, since Synopsys or Exemplar pragmas are different than
Synplicity.

If Synplify could read in EDIF netlists as well as Verilog & VHDL,
then the IP owners could synthesize using their tool and deliver
their IP as EDIF netlists without their customers having to deal with
incompatible synthesis pragmas/directives.

7 I need to create a fast, N-bit-wide bi-directional bus in some of my
FPGA designs. By 'fast' I mean not only launching data-out &
capturing data-in delays (small prop delay from pad to data
registers), but also fast in turning the bus around from read-to-
write or write-to-read, preferably in 1 clock cycle (i.e., I need
very small prop delay in tri-state control).

To meet this requirement, I need the N-bit data-in registers, the N-
bit data-out registers, and the N-bit tri-state control registers to
all be pushed into the I/O cells of the FPGA. This is easy to do with
the N-bit data-in & data-out registers, but invariably the N-bit tri-
state control register is optimized down to 1 bit (since all N bits
are logically the same) and the register that produces this 1 bit
must be in the core logic not the I/O cells. This slows down the
turnaround of the bus and forces me to insert wait states in the
controller, degrading performance.

We need a way to keep an N-bit tri-state control register even if all
N-bits are logically the same.

8 Help files / documentation seems incomplete when it comes to
synthesis pragmas concerning CPLDs. Example: for Xilinx devices,
xc_fast & xc_slow are mentioned as being valid for xc4000 only, but I
found that they also work for xc9500 devices, too.

9 In Xilinx Virtex designs, the Xilinx P&R tool takes shift register
structures and tries to fit them into the SRL macro (shift registers
implemented in 1 16-bit-LUT as opposed to regular FDCE's) if
the user wants to implement the shift register in regular FDCE's
(i.e., for pipelining purposes to distribute the bits of the register
from one side of the chip to the other), he must make sure there is a
reset or preset in place and that it is wired somewhere that won't
get stripped out (dummy pin on I/O or bit in a bus' memory map).
Since this may be hard to understand and pass along as other people
inherit / use the design, it would be better to implement in a
synthesis pragma. Can Synplicity & Xilinx work to make a clean
solution to this?

10

I would like to suggest that the on-line help files should
differentiate more clearly that the "block_ram & no_rw_check" are
seperate pragmas and don't need to be concatenated

is now:

synthesis syn_ramstyle = "registers"

req # Feature

synthesis syn_ramstyle = "select_ram"

synthesis syn_ramstyle = "block_ram"

synthesis syn_ramstyle = "block_ram & no_rw_check"

should be:

 x V

 c I

 4 R

 0 T

 0 E

 0 X

synthesis syn_ramstyle = "registers" x x 'RAM' from registers &

 combinatorial logic

synthesis syn_ramstyle = "select_ram" x x distributed RAM via

 LUT's (default)

synthesis syn_ramstyle = "block_ram" x Block RAM, with

 read/write address

 conflict resolution

 logic

synthesis syn_ramstyle = "no_rw_check" x Block RAM, with NO

 read/write address

 conflict resolution

 logic

11 I'm hoping to find some kind of synthesis pragma to define "origin
points" for multiple submodules (whose innards have already been
RLOCed), so that I can pack them close together. My brute force
alternative is to create one giant submodule w/ all the appropriate
RLOCs, but this doesn't lend itself well to (a) easy understanding by
others, (b) modular design, heirarchy, etc.,

