Design Challenge #1: a Basic 2x2 Interconnect

February 2007
www.bluespec.com

© Copyright Bluespec, Inc., 2007 All Rights Reserved.

Overview

If you are not yet familiar with Bluespec, then prepare yourself for something very different from what you
have seen or experienced before. Though some in the algorithm space have been successful at
efficiently synthesizing higher-level math/DSP designs, Bluespec is the only solution that succeeds for
control and complex datapaths. We invite you to take a deeper look — the typical response we get upon
learning about Bluespec is “Bluespec wasn’t what | expected at all”. What you'll find is truly unique, both
in approach and results:

= Elevated hardware design and modeling that keeps designers 100% in control of the architecture
and micro-architecture of their implementations.

= A unified environment for virtual prototyping, architectural exploration and IC implementation.

= No opportunity cost in adoption. As it layers incrementally on current flows — and generates
readable, predictable Verilog RTL — Bluespec can be used one block at a time, without upending
your current toolsets and methodologies. With less than a week of training, designers have
consistently completed their first project, including design and verification, in less than half the
time.

This document outlines Bluespec’s design solution to Design Challenge #1, the basic 2x2 interconnect, as
summarized in DeepChip’s ESNUG #459, Item #5. The motivation behind the design challenge was to
shift from marketing claims about high-level design into actual examples using real designs. Hopefully,
this will enable us to debate what it means to implement control logic intensive designs at a high level
versus RTL and explore the quality of the resulting implementations.

We invite you to review this 2x2 switch design (as well as the separately outlined DMA controller design).
These designs are intended to give you a taste of what it means to design control logic and complex
datapaths at a level above RTL. And, please keep in mind that this design was written to conform to the
problem specification — Bluespec provides complete control over the micro-architecture and can be used
to design any type of switch interconnect.

Highlights of the 2x2 interconnect design include:

¢ The refinement methodology with which it was designed. The design began as a
functionally correct, bit-true version that was pulled together in about an hour — and was
subsequently refined to meet the specification in three easy steps.

e The high-level transactions that are used to describe the core functionality of the switch
—and the interfaces. These make the design faster to design correctly, easier to read,
and much more extensible.

e The quality of results of the final design. The design meets the tight latency
requirement — which is a critical attribute in a switch interconnect as it directly impacts
system performance. In 65nm TSMC (using Artisan libraries for CLN65GP), using
Design Compiler the area is 15.7Kum? and the design frequency is 1.11 GHz under worst
case conditions and extended operating range (SS, 0.90V, 125 Degrees C). In 0.18u
TSMC (using Artisan libraries for CLO18G), using Design Compiler the area is 64.87
Kum? and the design frequency is 380 MHz under worst case conditions and extended
operating range (SS, 1.62V, 125 Degrees C).

While the solution is implemented five ways, four versions using Bluespec SystemVerilog (BSV) and one
using SystemC, this document will primarily describe the BSV designs — an appendix will provide a short
introduction to the SystemC version.

The BSV design starts with a functionally correct, executable, synthesizable design (Version 1) that can
be put together in about an hour, using existing BSV library facilities for buffering, interfaces and
connections. We then refine it in three steps. Version 2 implements the desired round-robin arbitration
inside the interconnect. Version 3 fixes up the buffering at the ingresses and egresses to meet the
desired 1-cycle latency across the switch. The final design, Version 4 fixes up the “sockets” of the
interconnect to meet the desired socket signaling protocol exactly. The steps genuinely constitute a
refinement because each change is a local change, keeping the rest of the code intact. All four versions
are fully synthesizable.

This document is distributed along with full BSV source codes, generated Verilog, testbenches and test
logs for all four versions. A simple “diff” between corresponding source files in successive versions is
adequate to observe the refinement changes.

All this is made possible because of BSV's high level of abstraction, powerful types and strong type-

checking, clean semantics based on transactions (Rules) and transactional (Rule-based) Interfaces, and
automatic regeneration of correct control logic as we substitute one component with another.

Problem specification

For your reference, the problem specification from DeepChip is repeated in this section.
Design Challenge #1: a Basic 2x2 Interconnect

Suppose we design a crossbar switch for an SoC connecting initiators to targets like processors and DMA
engines. Example targets are memories, 1/O blocks, and the DMA configuration port. The specs are:

- For uniformity, all busses are 32 bits wide.

- Two initiators and two targets.

- Requests (initiators to targets) are completely decoupled from responses (targets to initiators).
- Both requests and responses can be pipelined.

- The switch should preserve request order from a particular initiator to a particular target, and
the response order from a particular target to a particular initiator.

- For simultaneous requests from the 2 initiators towards the same target, and for simultaneous
responses from the 2 targets to the same initiator, there should be round-robin arbitration.

- In the best case (i.e., if allowed by arbitration and absence of back-pressure), requests and
responses should make it across the switch in one clock cycle, i.e., they should be buffered for
just one cycle in the switch.

Each connection between an initiator and the switch and between a target and the switch (also called a
socket) has the following structure and protocol, similar to the OCP-IP protocol:

- Each initiator has a master interface, connecting to a slave interface on the switch.

- Each target has a slave interface, connecting to a master interface on the switch.

2

- A master must send a request on every clock cycle (it sends a NOP request if it does not have
a real request to send). It can advance to the next request whenever it sees an accept signal
from the slave. An accept refers to the request on the current cycle, and so the master can send

the next request on the very next cycle, i.e., requests can be pipelined at full bandwidth of one
request per clock.

- Symmetrically, a slave must send a response to a master on every clock cycle (it sends a NOP
response if it does not have a real response to send). It can advance to the next response
whenever it sees an accept signal from the master.

Testbench Requirements:

- Must ensure that simultaneously sent traffic from 2 different initiators to 2 different targets
occurs at full bandwidth.

- Must ensure that simultaneously sent traffic from 2 different initiators to the same target occurs
in properly arbitrated form (round-robin).

In the following figure 1, there is a block diagram of the architecture of the design:

Initiator 0 Initiator 1
master master
v v
slave slave
master Interconnect master
v v
slave slave
Target 0 Target 1

In the following figure 2, there is a diagram of the protocol between master and slave interfaces. Master
and slave interfaces occur on both the initiator and target sides of the interconnect. On all four sockets in

the design, requests flow from a master interface to a slave interface — responses flow from a slave to a
master:

master

I 1 +

request accept response accept

¥ |

slave

Bluespec 101

Bluespec enables design at a much higher level than RTL, while leaving the specification of the
architecture to the designer, giving him/her 100% control over the quality of the implementation including
latency, area, power and timing. With Bluespec, designs and models are expressed using transactions to
define both internal module behavior within modules and interfaces between modules.

This section is not intended to make you an expert, but it is intended to give you enough background to
understand the design of the 2x2 switch interconnect.

There are four key ideas to keep in mind while looking through the code:

Explicit state — all state, e.g. registers, RAMs, FIFOs, ROMs, any sub-module,..., is explicitly
specified by the designer. No state is added or subtracted by the Bluespec compiler. Every module
will have its state explicitly coded — though you get to leverage high-level, abstract types for more
succinct and expressive specification of that state. You'll see this state reflected, as is, in the Verilog
generated by the Bluespec compiler.

Transactions for behavior within modules — instead of ALWAYS blocks, you’ll see behavior coded
in structures called RULEs, which describe behavior using isolated transactions. Arule is a
description of what to do for a particular situation. A rule describes what state to update when certain
designer-specified conditions are true. For example, if your design required some things to happen
when an interrupt happened, you would code a rule to perform these things whenever the conditions
for an interrupt were true.

The key advantage of this approach is that designers can code each “RULE” in isolation without
regard to what else is happening in the system — this allows designers to design incrementally (which
really simplifies the complexity of hardware design, where you typically have to pay extremely close
attention to resource contention, such as multiplexing, communication, synchronization). For
example, when you code the interrupt rule, you can do so without worrying about its interaction with
the rest of the design, such as the logic responsible for “normal” operation — you let the compiler
worry about properly flagging and handling unanticipated interactions. The tool is responsible for
scheduling as many rules to run in parallel as possible. During this process, it will identify any shared
resource situations, flag them for you, and automatically insert the proper multiplexing for you as well

as the logic to schedule access to these common resources.

Here’s the syntax for a rule (using Bluespec SystemVerilog (BSV)):

rule <ruleName> (<boolean cond>);
<state update(s)>
endrule

On first blush, a rule sort of operates like an if...then... When the <boolean cond> is TRUE, then the
<state update(s)> occur(s). If there are multiple updates, then all have to happen together, or none
can happen at all.

Well, that’s the simplified, introductory view. The power is in the additional sophistication. In addition
to the <Boolean cond>, there are two additional considerations to whether a rule “executes” its state
updates:

1.

The first is that, although most rules will execute in parallel in hardware, Bluespec’s compiler
ensures that each rule executes in the hardware as though it were the ONLY thing operating at
that moment. Another way to describe these rules is ATOMIC transactions. This is what allows
designers to think about and design each rule by itself and get it right — the compiler ensures that
this atomic behavior is maintained in the hardware.

When does this really matter? It comes into play particularly when there are rules that might want
to update common (or shared) state. In RTL hardware design, designers need to keep track of all
the potential updates to shared state AND properly schedule access to this shared state by many
different operations in the hardware. With Bluespec, these shared resource conditions are
automatically recognized and scheduled (albeit with 100% designer visibility and control). And,
the compiler will even recognize when rules have mutually exclusive access to the same state
and ensure that they will always have access to that state when needed.

The end result: you can never have unintended race conditions accessing shared resources.
This eliminates a major source of obscure, subtle errors in hardware design.

As such, a rule’s Boolean condition may be TRUE, but its operation may conflict with another rule
which takes precedence which may prevent its execution in a given cycle (due to an attempt to
access shared state). The compiler generates the optimal parallel execution of rules in hardware
while properly scheduling access to shared resources.

The second consideration has to do with how interfaces work. With Bluespec, all state elements
such as registers and memories have interfaces just like traditional design modules. But with
Bluespec, these interfaces are transactional — they not only describe the wire interfaces, but they
also understand how to pass data and the proper conditions for doing so.

These proper conditions also get considered in determining when a rule can execute. The
easiest way to understand this is to review the following rule example:

rule pass_through (state == FULL_THROTTLE);
y <- fifoln.deq();
z = f(y);
fifoOut.enq(z);

endrule

This rule has an explicit condition that says it should execute when in the “FULL_THROTTLE”
state. But, when it executes, it is supposed to dequeue a value from fifoln and, at the same time,
enqueue the result of f(y) into fifoOut. What if there’s nothing to dequeue from fifoln? What if

fifoOut, the place you want to put the data, is full? Normally, designers have to design the control
logic to check all of these things. With Bluespec, these conditions (for all interfaces of modules
and state, such as registers, FIFOs, ...) become implicit conditions of the rules that use the
interfaces. If ANY of the interfaces is not ready, then the rule cannot execute.

Even in this basic rule example, a lot of complex behavior is simplified. The “pass_through” rule
will move data from one FIFO to another after manipulating it with f() only when:
e In the proper state: state == FULL_THROTTLE
o All the interfaces allow it (in this case: that there is data to be moved from fifoIN
and there is also a place to put it into fifoOut)
e There are no other rules that want to dequeue from fifoln or queue into fifoOut in
this cycle. If there were, only one would be allowed.
When the rule executes, all three actions will happen simulateously: data would be dequeued,
passed through the combinational logic in the function f(), and the result would be queued into
another FIFO. A lot of explicit control logic in RTL is handled succinctly and implicitly with rule
and interface transactions with Bluespec.

Transactions for interfaces between modules — as we just introduced in the last section, instead of
port lists, interfaces are transactions defined using rule-based interface methods, as shown below,
using some extensions to the notation of SystemVerilog or SystemC (the former is shown below):

interface FIFOBuf#(type x_t);
method Action enqg (x_t x); /I Note: an “Action” means that it changes state
method ActionValue#(x_t) deq (); // Note: an “ActionValue” means that it returns a value
Il and changes state
method Action clear ();
endinterface

[Note: the (type x_t) construct is just SystemVerilog's notation for type parameterization (also known
as polymorphism, or genericity), i.e., x_t is a type variable representing the type of items stored in the
FIFO.]

The enq interface method encapsulates all the ports for enqueuing: the input data bus (whose width
depends on the particular data type to which the generic type x_t is instantiated), the output READY
signal (which tells the outside world when the FIFO is able to accept an enqueue), and the input
ENABLE signal (which the outside world uses to tell the FIFO that it is enqueuing). Similarly, the deq
method encapsulates all the ports required for dequeueing: the output data bus, the output READY
signal (which tells the outside world when valid data is ready to be dequeued) and the input ENABLE
signal. Based on the interface method’s guard conditions in the design (e.g. “not full” for an
enqueue), the compiler generates the ready and enable signals automatically in the output Verilog
RTL.

What does it mean to encapsulate the ports? Let’s look at the code for an enqueue interface method
in a FIFO:

method Action enq(x) if (notFull);
rw_enqg.wset(x); // Pass the input through (when ‘notFull’)
endmethod

The notFull is a Boolean signal that is part of the internal FIFO implementation which simply indicates
whether the FIFO has space or not. While not exposed to an external user of the FIFO, this value
becomes an implicit condition on whether the method can be called and it forms the value behind the
READY signal associated with this method in the generated RTL. This notFull condition becomes an
additional condition that is ANDed into the composite conditions on any rules that use this method.

In general, method arguments become module input data bus ports. Method results (such as that
returned by deq), become output data bus ports. A method can have multiple output data bus ports
because return types can be structs (records) with multiple fields, and vectors. All methods have an
output READY signal (which is the interface method’s condition). All Action and ActionValue methods
(like those shown) have input ENABLE signals. Action and ActionValue methods can cause a state
change inside the module. A third kind of method, which we call Value methods (not shown in this
example), are purely combinational—their results are combinational functions of their arguments and
internal module state. The compiler optimizes away READY and ENABLE signals of a method if it
proves that they are always asserted.

A client module that uses the FIFO contains Rules that invoke the enq and deq methods, as in the
example below:

module mkClient (...);
... instantiate fifo ..

rule upstream (... cond1 ...);
... other actions ...
fifo.enq (expr?);
endrule

rule downstream (... cond2 ...);
x <- fifo.deq ();
... other actions ...
endrule
endmodule

As discussed before, each rule has an explicit condition, depicted above as the expressions cond?1
and cond?2. These are pure combinational Boolean expressions. Each rule also contains one or more
actions that can be executed atomically only if the rule condition is true. For example, the upstream
rule contains an action that enqueues the value of expression expr1 into the FIFO, and the
downstream rule contains an action that dequeues an item x from the FIFO.

The conditions of all methods invoked by a rule are incorporated into the overall condition of the rule.
For example, the ENQ_READY signal is “AND”ed with cond1 to determine the overall condition of the
upstream rule. The DEQ_READY signal is “AND”ed with cond2 to determine the overall condition of
the downstream rule.

So to reiterate and summarize, a rule can only execute if all its conditions permit. When it executes
(we call it: fires), all its actions, including all the actions in all the methods that it invokes, are executed
simultaneously as one composite atomic action. Thus, the upstream rule can only fire if ENQ_READY
is true, and then the enqueueing action becomes part of the overall atomic action of the rule. When
the rule fires, the enqueued data is driven and ENQ_ENABLE is asserted.

The condition of a method or a rule is necessary, but not sufficient, for a rule to fire. In particular,
since rules can share resources (such as the FIFO above), simultaneous firing might not be possible
while maintaining atomicity, i.e., if simultaneous firing would lead to inconsistent states. The compiler
emits scheduling logic to ensure that simultaneous firing is only possible if it maintains atomicity.

When compiling a FIFO implementation, the compiler performs a systematic analysis that infers
whether the enq and deq methods can be operated simultaneously safely, and under what conditions.
Note, different FIFO designs may or may not permit such simultaneous operation.

This interface information is recorded by the compiler with the FIFO implementation. Then, when
compiling mkClient, the compiler uses this information to introduce suitable control logic in mkClient
to guarantee that the upstream and the downstream rules can fire simultaneously only when

conditions permit them to do so safely.

e High-level, abstract types, parameters and polymorphism — along with the power to express the
behavior of the design as a set of transactions and transactional interfaces, you'll also see more
expressive design using high-level abstract types, such as structures and enumerated types. Also,
though less emphasized in this particular design, there is the power to parameterize designs along
almost any dimension. Examples include the ability to parameterize with: interfaces (which type of
interface to use), functions (e.g. what kind of sort algorithm), types (polymorphic design), sizes, and
even modules. At compile time, the tool will generate the hardware specified by the chosen
parameters — and elaborate the hardware using the parameters as well as other procedural controls:
conditionals such as if, for loops, and even recursion.

Problem Solution: Introduction

The following sections show how we approach this design through systematic refinement in Bluespec
SystemVerilog (BSV). We develop the design in four stages of refinement (all synthesizable):

e Version 1 is a quick first cut, including a testbench, in which we can run bit-true traffic through the
system. We make extensive use of BSV library facilities for buffering, interconnects and
connections, allowing us to rapidly implement a working system (in about an hour). It will not
contain round-robin arbitration; it will not meet the 1-cycle latency requirement; it will not follow
the socket signaling protocol, but
e itis bit-true, i.e., transports all request and response bits,

e and is functionally correct, i.e., correctly transports requests and responses to the correct
targets and initiators, respectively and so can be used in simulations.

e Version 2 adds support for the round-robin scheduling requirement.

e Version 3 adds support for the 1-cycle latency requirement.

e Version 4 meets all the requirements, adding support for the socket signaling protocol
requirement.

The steps genuinely constitute a refinement — each version reuses most of the source code from the
previous version, i.e., each change is very local.

This document is not intended as a detailed tutorial on BSV. It is only intended to give a feel for doing
high-level design in a Bluespec environment — while you may not understand all the details, hopefully you
will be able to follow the commentary and get the gist of the code.

Problem Solution: Version 1

The file Socket_IFC.bsv, (the sources for this version are located in the directory:
InitialVersion.v1/Sources) defines the bit-true representations of requests and responses on each socket
of the switch interface.

A request (struct Socket_Req) contains an opcode field (RD, WR or NOP), an info field, an address field
and a data field. If the opcode is NOP, none of the other fields are relevant. If RD, the address is
relevant. If WR, both address and data are relevant. The info field is an “application-specified” field; here
we just use the LSB to tell the target which initiator sent this request (0 or 1), so that it knows where to
send the response.

The switch uses the LSB of the address bit to route requests either to target 0 or target 1, i.e., even
addresses go to target 0, odd requests to target 1.

A response has similar fields. A response is only expected for RD requests. The info field is used by a
target to inform the initiator which target sent this response (0 or 1). The LSB of the address field is used
to route responses back to initiator 0 or 1.

After this, we use typedefs to define a master interface to be just the BSV library Client interface, from
which one can use the get method to obtain requests, and the put method to give it responses. Similarly,
we define a slave interface to be just the BSV library Server interface, from which one can use the put
method to give it requests, and the get method to obtain responses.

Finally, we define two functions fifos _to_master _ifc and fifos_to_slave_ifc that convert pairs of FIFO
interfaces to master and slave interfaces, respectively.

The file Switch.bsv defines the crossbar switch. First, we define Switch_IFC, the interface of the switch.
Then, we define some address-decode functions for requests and responses. Finally, we define
mkSwitch, the switch module itself. It has 8 FIFOs (from the BSV library) for buffering requests and
responses, a pair for each socket. Each pair holds incoming and outgoing items. These are followed by
8 rules, one for each combination of request/response, initiatorQ/initiator1, and targetO/target1. Finally,
we use the functions fifos_to_master _ifc and fifos_to_slave ifc to create the interfaces of the switch.

The above two files, representing the complete first cut at the design, have less than 300 lines of BSV
source code. By using FIFOs, GetPut, ClientServer etc. from the BSV library, the whole design can be put
together rapidly.

The file Tbh.bsv is a small testbench. It starts with the definition of the top-level module mkTb, which
corresponds directly to Figure 1, i.e., it instantiates two initiators, two targets, the switch, and makes all
the connections. This is more than just a “wiring” of the top-level modules! The interface methods have
full BSV Rule semantics, with all the benefits therein (protocol correctness). Each method in each
interface incorporates a complete signalling protocol, complete with flow control, and the mkConnection
constructs implement logic that ensure that this signalling protocol is followed precisely. In BSV, using
such connection constructs, one never encounters the kind of timing errors that one often encounters in
RTL interfaces, such as asserting a READY signal when it was not supposed to, or reading/writing a data
bus on the wrong cycle, etc.

In the file, mkTb is followed by mkinitiatorModel, a definition of a model of an initiator. The id parameter is
assumed to be unique for each instance of an initiator (we use 0 and 1). We instantiate a random number
generator using mkFeedLFSR from the BSV library, giving it a different seed for each instantiation (i.e.,
for each id) so that the different instances generate different pseudo-random sequences. We instantiate
two FIFOs reqgs and resps to buffer outgoing requests and incoming responses. We also instantiate two
FIFOs expected_resps_0 and expected _resps_1 to hold expected responses from targets 0 and 1,
respectively. For these last two FIFOs, we have sized them sufficiently large (10 deep) to account for
pipeline latency, i.e., we will be able to send out multiple requests before we receive the first response.

In rule gen_reqs, the expression (((randx & 7) > 5) ? WR : RD) randomly generates WR (25% probability)
and RD (75% probability) requests. We also generate random addresses and data. For RD requests, it
creates expected responses and holds them in the FIFOs expected _resps_0 and expected _resps_1,
depending on whether the request is going to target 0 or 1. We cannot hold all expected responses in a
single FIFO because the two targets may return responses out of order. The rules accept resps from 0
and accept_resps_from_1 accept incoming requests from targets 0 and 1, respectively, and check them
against expected responses.

The module mkTargetModel has one rule, respond, which simply consumes all requests and generates
responses for RD requests.

This entire program can simulated using any of the standard ways to simulate BSV programs, for
example, using Bluesim, the native source code Bluespec simulator, or Verilog simulation. It can be
compiled using the Bluespec compiler bsc to Verilog (including the testbench!), and simulated using any
Verilog simulator. The Verilog is further synthesizable to a netlist using a standard RTL-to-netlist
synthesis tool.

When compiling Switch.bsv using bsc, the compiler will issue four warnings. For example, it warns that,
since rules initiator_0_to_target 0 and initiator_1_to_target 0 may both want to enqueue a request
simultaneously for target 0, it must arbitrate, and therefore it picks a static priority of one over the other.
The other three warnings are similar, for arbitration of requests towards target 1, and responses towards
initiators 0 and 1, respectively. We will ignore these warnings, since we will anyway fix this with round-
robin arbitration in Version 2.

Because of the FIFOs for incoming and outgoing items in mkSwitch, the minimum latency across the
switch will be 2 cycles for this version, i.e., each item spends at least one cycle in an incoming FIFO and
one cycle in an outgoing FIFO.

Problem Solution: Version 2

In this version, we add round-robin arbitration in file Switch.bsv, (the sources for this version are located
in the directory: v2/Sources). We recommend doing a “diff’ between the
InitialVersion.v1/Sources/Switch.bsv and v2/Sources/Switch.bsv to see the change. Inthe
mkSwitch module, we have added four Boolean registers to hold the round-robin state for the four outlets
of the switch (two for requests towards targets, and two for responses towards initiators). We have
added four rules, one for each egress, such as rule both_initiators_to_target 0, which fires when both
initiators have requests destined for target 0. These rules implement the round-robin policy. Note that
the condition of the rule both_initiators_to _target 0 includes the condition of the rule
initiator_0_to_target_0, so that whenever the former is enabled, so will the latter. The

descending _urgency attribute gives priority to the former rule in this situation. Thus, if both initiator FIFOs
have requests for target 0, then the “both” rule will fire; if only one of the FIFOs has a request for target O,
then the original rules will fire. The original rules did not have to be touched. Note: even though we have
replicated some text from the original rules into the new rules, the BSV compiler will automatically share
all common logic.

The files Socket_IFC.bsv and Th.bsv remain completely unchanged.

Problem Solution: Version 3

In this version, (the sources for this version are located in the directory: v3/sources), we fix the latency
across the switch to achieve the desired 1-cycle latency.

Again, the files Socket_IFC.bsv and Th.bsv remain completely unchanged.

We introduce a new package in the file EdgeFIFOs.bsv that is properly considered a library element
because it is in no way specific to the current SoC switch design. It contains highly generic
(parameterized) facilities that have broad applicability in a number of designs. However, we include the
package here for completeness and for discussion. The package defines two FIFOs that are useful to
achieve certain performance requirements. Please see the detailed comments at the head of the file.

The module mkPipelineFIFO is a 1-element FIFO into which it is possible to simultaneously enqueue and
dequeue an item when it already contains an item (i.e., this is the same as an interlocked pipeline
register).

The module mkBypassFIFO is a 1-element FIFO into which it is possible to simultaneously enqueue and
dequeue an item when it is empty—the newly enqueued item is immediately “bypassed” through to the
dequeue operation. Thus, the Bypass FIFO can have zero latency, i.e., if an enqueued item can be
buffered in the FIFO for one or more cycles before it is dequeued, but in the best case the item can spend
zero cycles in the FIFO if it is bypassed through.

If we look at the new version of file Switch.bsv, note that the sole change is to replace the previous

10

mkFIFO module instantiations by mkPipelineFIFO and mkBypassFIFO instantiations. This is possible
because they have exactly the same interface as ordinary FIFOs. By making sure that in each path
through the switch we have one PipelineFIFO and one BypassFIFO, we automatically achieve the desired
1-cycle latency, i.e., in the best case, an item spends 1 cycle in the PipelineFIFO and zero cycles in the
BypassFIFO. Note: the Switch still has exactly the same interface as before, and is still fully round-robin-
arbitrated, and is still fully flow-controlled as before. Further, none of the Rules had to be changed.

There is much subtlety under the covers, managed by the Bluespec compiler. In mkPipelineFIFO, there
is a control dependency (and a combinational path in the ensuing circuits) from the enq operation to the
deq operation, because engq is allowed if deq is simultaneously attempted when the FIFO already
contains an item. Similarly, in mkBypassFIFQO, there is a control dependency (and a combinational path
in the ensuing circuits) from the deq operation to the enq operation, because deq is allowed if enq is
simultaneously attempted when the FIFO is empty. Because these properties are formally captured in
interface method scheduling semantics, the Bluespec compiler checks that everything remains consistent
(e.g, no combinational paths), and it constructs the correct control logic to take these properties into
account. However, in the source code, it is as simple as substituting mkFIFO by one of these FIFOs.

Problem Solution: Version 4

In this final version, we fix up the switch ports so that they follow the socket protocol exactly.

We often refer to this step as “impedance matching” for the following reason. Had we been free to
choose the switch socket protocol, we would have stopped at Version 3—it is a perfectly fine socket
protocol and is fully synthesizable, and efficient. Indeed, when we are working entirely within BSV, we
take advantage of these high-level, robust BSV protocols and don't worry any more about nitty-gritty
signaling details. Thus, typically this “impedance-matching” activity is only needed at the edge of a BSV
subsystem where it has to interact with some existing IP for which a protocol has already been specified.

In implementing normal BSV interfaces, every method has a READY output signal indicating when the
method can be used. For value methods, this READY signal indicates when the output value is valid.
For Action methods, there is also an input ENABLE signal by which the external circuit indicates to the
module when it is using the method. In the current socket protocol spec, there are no such READYs and
ENABLEs. A request/response must be supplied on every clock (using NOP opcodes if necessary), and
can be advanced when an accept signal is asserted from the other side. We implement this in BSV by
exposing all these signals as actual method arguments and results, and asserting that the methods are
used on every clock. We say that the methods are always ready and always enabled.

For a method to be always ready it cannot, in turn, invoke any other methods that may not be ready.
Thus, if a method must enqueue into or dequeue out of a FIFO, then the usual implicit conditions on those
methods must be sacrificed. We say that such FIFOs have unguarded enqueue or dequeue operations.
These unguarded operations must be used with care, by always using them inside explicit conditional
statements that check whether it is ok to enqueue or dequeue, respectively.

The new version of the file EdgeFIFOs.bsv (in FinalVersion.v4/Sources) now contains variants of the
Pipeline and Bypass FIFOs with unguarded enqueue and dequeue operations. In each variant, note that
only one end (e.g., enqueue or dequeue) is unguarded, whereas the other end is guarded as usual. We
use the unguarded ends at the interfaces to the external world, keeping the more robust, guarded
semantics for the inward-facing ends. Also, note that EdgeFIFOs.bsv is still just a library package, not
at all specific to the current SoC switch design. It has wide applicability in a number of designs.

In the file Socket_IFC.bsv, we now redefine Socket master_ifc and Socket_slave _ifc to expose all the
requests, responses and accept signals explicitly. Socket _master _ifc consists of two sub-interfaces,
Socket_master_req_ifc and Socket _master _resp_ifc, for the request side and response side, respectively

The Socket_master_req_ifc and Socket _master_resp_ifc both have an always_ready attribute (this is

11

applied in Switch.bsv). This Bluespec compiler will verify that this is true, i.e., that these methods do not
depend on any conditions. The compiler will also remove the thereby redundant READY wires. The
Socket_master_resp_ifc also has an always_enabled attribute (also applied in Switch.bsv). Once again,
the Bluespec compiler will verify this at any use of this interface, and will remove the ENABLE wire.

The function fifos_to_master _ifc is redefined so that it uses unguarded FIFO interfaces and fully
encapsulates the socket signaling protocoal, i.e.,
e« The generation of a request on every cycle, inserting a NOP request if a real request is not
available
e Acceptance of the accept signal for requests and advancing to the next request
e Acceptance of a response on every cycle, discarding any NOP responses
e Generation of the response accept signal on every cycle

Similarly, we also define the new Socket_slave_ifc with its sub-interfaces Socket_slave req_ifc and
Socket_slave_resp_ifc, and we define the function fifos_to_slave_ifc that fully encapsulates the socket
signalling protocol. The result is that the interfaces will contain exactly the desired wires—no more, no
less—specified by the socket protocol interface.

All these facilities for the socket signaling protocol are fully reusable in any block that has a similar socket.
In fact, we shall reuse them immediately, below, to fix up the testbench in Th.bsv.

Finally, in Th.bsv, we define mkConnection to work on the new socket interface Socket master_ifc and
Socket_slave_ifc, and vice versa. This illustrates the use of BSV's powerful, user-extensible overloading
mechanism. l.e., if you think of mkConnection as a module that encapsulates all the state and behavior
necessary to connect an interface of type T; to an interface of T,, then here we have just extended the
overloading of mkConnection to also work on the types Socket _master _ifc and Socket_slave_ifc. Thus,
in the top-level module mkTb at the top of this file, we did not have to touch the source code—lines such
as mkConnection (initiator_0, switch.initiator_0) automatically (through overloading resolution) instantiate
the right module to connect our new master and slave interface types.

In the file Switch.bsv, the sole difference is to replace the previous mkPipelineFIFO and mkBypassFIFO
instances with versions that have unguarded enqueue and dequeue operations facing the exterior.

Even with all these refinements, the final versions of Socket_IFC.bsv and Switch.bsv together remain
about 500 lines of source code (Version 3, without the impedance-matching changes, is 368 lines).

In the file Th.bsv, the mkinitiatorModel and mkTargetModel modules similarly just replace mkFIFO by
mkPipelineFIFO with suitable unguarded ends pointing towards the switch. Because we redefined
fifos_to_master_ifc and fifos_to_slave_ifc in Socket_IFC.bsv, we get, for free, the socket signaling
protocol at the interfaces for the initiators and targets, without any change in the interface part of the
modules' source code.

In Version 4, we also provide two more testbenches, Tb1.bsv and Tb2.bsv. In Tb1.bsv, instead of
generating random traffic, initiator O pumps RD requests to target 0 and initiator 1 pumps RD requests to
target 1. By running this test and observing the outputs we verify the following:

« We achieve full bandwidth in both directions, from initiators to targets and back. After an initial
start up transient, both initiators send requests on every cycle, both targets receive requests and
send responses on every cycle, and both initiators receive responses on every cycle. Since
requests from the two initiators go to separate targets, there is no arbitration necessary.

¢ We meet the latency specification in both directions, i.e., requests and responses spend just one
cycle buffered in the switch.

¢ The socket signaling protocol (request/accept and response/accept) is working.

In Th2.bsv, both initiators pump RD requests to target 0. By running this test and observing the outputs
we verify the following:

12

¢ Round-robin arbitration is working correctly, i.e., target 0 alternately gets requests form initiator 0
and initiator 1, respectively.

o We still achieve full bandwidth, despite the arbitration, i.e., target 0 receives requests and sends
responses on every cycle. Of course, because of the flow control inherent in the socket protocols
and in the arbitration, each initiator is only able to send a request and receive a response every
other cycle.

In all these tests, item order (request or response) between any particular pair of endpoints is preserved.

DC Synthesis Results

For details on the synthesis results, including a Verilog netlist for the design and information about the
runs, please refer to the directory: Basic2x2Interconnect/FinalVersion.v4/DCSynthesis. The design was
synthesized for both 65 nm and 180 nm.

Here were the main assumptions used for 65 nm:

e Design Compiler Version: X-2005.09-SP3

e Technology: TSMC CLN65GP process

e Library: Artisan 10-Track Advantage (SS Process Spice Models, 0.90V, 125 Degrees C)
e Added Input/Ouput delay = 25% of clock period.

And the results for 65 nm were as follows:

e Frequency: 1.11 GHz

e Area: 9.81 Kgates, 15.70 Kum*2 (1 gate = 1.60 um*2)

Here were the main assumptions used for 180 nm:

e Design Compiler Version: X-2005.09-SP3

e Technology: TSMC CLO18G process

e Library: Artisan SAGE-X (SS Process Spice Models, 1.62V, 125 Degrees C)
e Added Input/Ouput delay = 25% of clock period.

And the results for 180 nm were as follows:

e Frequency: 380 MHz

e Area: 6.50 Kgates, 64.87 Kum”2 (1 gate = 9.98 um”2)

Summary

The design of the 2x2 switch interconnect has shown a case study in design via refinement using
Bluespec SystemVerilog (BSV). We were able to quickly produce a working, synthesizable model using
BSV's powerful library facilities for buffering, interfaces and connections. Then, we systematically refined
it in a series of steps, each involving a few highly local changes, to meet requirements on arbitration,
latency, and exact socket signaling protocol. Even though the changes are textually local, the
implications in the generated circuits can be more far-reaching, because a lot of control logic must
accommodate the new protocols; however, these are automatically regenerated by the Bluespec
compiler. Further, many of the components are highly reusable in other designs, i.e., facilities such as
PipelineFIFOs and BypassFIFOs, and facilities encapsulating the details of the socket signalling protocol.
For example, if we were now to design an actual initiator or target block, the question of interfacing to the

13

switch with the actual socket protocol is already solved, and in a robust, encapsulated way where the
internals of the block are completely insulated from details of the socket signalling protocol.

All of this was only possible because of the high-level abstraction mechanisms, formal semantics and
composability of the constructs in Bluespec SystemVerilog -- and, of course, we support these capabilities
in SystemC as well.

For the first time, there is:

1. A solution that unifies virtual prototyping, architectural exploration and IC implementation.

2. A high-level solution for control and complex datapaths — but with 100% of the control and quality of
results of hand-coded RTL.

Hopefully you’ve been able to get a taste of why we say that Bluespec is a simpler and more scalable way
of managing complex concurrency & interface protocols vs. RTL. We are also the only one significantly
improving the design of control logic and complex datapaths. Such troublesome designs are:

e The hardest to get right. Managing complex concurrency with lots of shared resources (both local
and across chip) is very hard to implement correctly. Think about the challenges properly managing
back pressure, interface protocols, race conditions, deadlock/livelock conditions...

e The areas where most of the bugs (especially the subtle ones that later bite you) reside.

e The most prominent by far. One of our customers surveyed their IP development roadmap and found
that designs with control logic and complex datapaths represented 90% of their planned projects.

This is where Bluespec shines. Everything else is just RTL. Can you afford not to take a closer look?

14

Appendix A: SystemC Version

In the directory, AltFinalVersion_ESE_SystemC.v4, there is an alternative final version of the design
written in SystemC with ESL extensions for rules and interface methods. The internal behavior of the two
designs was structured slightly different — but you’ll see that it uses the same high-level semantic
constructs for atomic transactions and transactional interfaces. The syntax is different — but the high-level
semantics are the same.

With Bluespec, you work in the familiar syntax of your choice, SystemVerilog or SystemC. But, with either
environment, you get the same high-level semantics — whether you are doing a design or model, you
have a common way to express your design or model using atomic transactions and transactional
interfaces.

Here are a few examples showing direct correspondence between the two implementations:
Example 1a: Interface for the Switch (in Bluespec SystemVerilog design)
interface Switch_IFC;
/I we have 2 slave interfaces towards the initiators
interface Socket_slave ifc initiator_O;
interface Socket_slave ifc initiator_1;
/l we have 2 master interfaces towards the targets
interface Socket_master_ifc target 0;
interface Socket_master_ifc target_ 1;
endinterface: Switch_IFC
Example 1b: Interface for the Switch (in SystemC design)
ESL_INTERFACE (Switch_IFC)

ESL_SUBINTERFACE (initiator_0, Socket_slave_ifc);
ESL_SUBINTERFACE (initiator_1, Socket_slave_ifc);

ESL_SUBINTERFACE (target_0, Socket_master _ifc);
ESL_SUBINTERFACE (target_1, Socket_master_ifc);
b

Example 2a: Address decode function (in Bluespec SystemVerilog design)
function Bool addr_is_for_target 0 (RegAddr addr);
return (addr[0] == 0);
endfunction

Example 2b: Address decode function (in SystemC design)

bool
addr_is_for_target 0 (ReqAddr addr)

return ((addr & 0x1) == 0);
}

Example 3a: Instantiating state (in Bluespec SystemVerilog design)

15

/[---- for incoming requests (from initiators)
FIFOF#(Socket_Req) from_initiator_0 <- mkPipelineFIFO_ug_engq;
FIFOF#(Socket_Req) from_initiator_1 <- mkPipelineFIFO_ug_engq;

Example 3b: Instantiating state (in SystemC design)
/I ---- for incoming requests (from initiators)

FIFO<Socket Reg> *from_initiator_0;
FIFO<Socket Reqg> *from_initiator_1;

16

