Design Challenge #2: a Simple 4-Channel DMA Controller

February 2007
www.bluespec.com

© Copyright Bluespec, Inc., 2007 All Rights Reserved.

Overview

If you are not yet familiar with Bluespec, then prepare yourself for something very different from what you
have seen or experienced before. Though some in the algorithm space have been successful at
efficiently synthesizing higher-level math/DSP designs, Bluespec is the only solution that succeeds for
control and complex datapaths. We invite you to take a deeper look — the typical response we get upon
learning about Bluespec is “Bluespec wasn’t what | expected at all”. What you'll find is truly unique, both
in approach and results:

= Elevated hardware design and modeling that keeps designers 100% in control of the architecture
and micro-architecture of their implementations.

= A unified environment for virtual prototyping, architectural exploration and IC implementation.

= No opportunity cost in adoption. As it layers incrementally on current flows — and generates
readable, predictable Verilog RTL — Bluespec can be used one block at a time, without upending
your current toolsets and methodologies. With less than a week of training, designers have
consistently completed their first project, including design and verification, in less than half the
time.

This document outlines Bluespec’s solution to Design Challenge #2, a simple 4-channel DMA controller,
as summarized in DeepChip’s ESNUG #459, Item #5. The motivation behind the design challenge was to
shift from marketing claims about high-level design into actual examples using real designs. Hopefully,
this will enable us to debate what it means to implement control logic intensive designs at a high level
versus RTL and explore the quality of the resulting implementations.

We invite you to review this DMA controller design (as well as the separately outlined 2x2 switch
interconnect design). These designs are intended to give you a taste of what it means to design control
logic and complex datapaths at a level above RTL. And, please keep in mind that the design was written
to conform to the problem specification — Bluespec provides complete control over the micro-architecture
and can be used to design any type of DMA controller.

Highlights of the DMA design include:

¢ The high-level transactions that are used to describe the core functionality of the DMA
controller. These transactions make the design faster to design correctly, easier to read,
and much more extensible.

e The quality of results of the final design. In 65nm TSMC (using Artisan libraries for
CLNG65GP), using Design Compiler the area is 44.43 Kum? and the design frequency is
769 MHz under worst case conditions and extended operating range (SS, 0.90V, 125
Degrees C). In 0.18u TSMC (using Artisan libraries for CLO18G), using Design Compiler
the area is 212.87 Kum?” and the design frequency is 286 MHz under worst case
conditions and extended operating range (SS, 1.62V, 125 Degrees C).

This design was done using Bluespec SystemVerilog (BSV). Bluespec designs can also be done at a
high-level using SystemC — an example of this is provided with the 2x2 switch design solution for your
reference.

This document is distributed along with full BSV source codes, generated Verilog, testbenches, test logs,



and synthesis results.

Problem specification

For your reference, the problem specification from DeepChip is repeated in this section.
Design Challenge #2: a Simple 4-Channel DMA Controller

Let's consider a DMA module which is, of course, configurable, and supports multiple concurrent
transactions (multi-channel). At its interface, the following 3 groupings can be considered:

1. Configuration port is a target interface (similar to the OCP-like socket interface described in the 2x2
interconnect).

2. Memory port is an initiator port (OCP-like socket interface) on which both read and write DMA transfers
operate.

3. Third group contains interrupt lines which begin transfers and status lines which mark end of transfers
on a per channel basis (there are a pair of interrupt/status lines per channel. Once a channel has been
configured, an interrupt request indicates to the DMA controller to begin an operation; status indicates
completion)

With regards to features:

- For uniformity, all busses are 32 bits wide.

- 4 channel DMA, where all channels can have pending read or write operations; channel number
dictates priority for read/write operations. Channel 0 take priority over channel 1, etc.

- Memory requests can be sent every cycle; can be delayed due to back-pressure from the memory port.

- Memory responses are in-order for each channel, but may be out of order between channels.
Response latency from the memory is completely arbitrary.

- Memory requests and responses should be tagged with a 2-bit thread ID to identify the
request/response channel.

- Configuration allows setting of source address, destination address and number of words transferred,
plus the enabling of the channel via software configuration or hardware interrupt.

- Write operations from the DMA controller take precedence over read operations.
- The ports should be fully utilized when possible.

Assume no more than 4 outstanding memory read requests per channel; largest transaction for the
memory transaction is 64 bytes1 (the DMA transactions may be larger).

Testbench Requirements:

We'll leave this pretty open ended. Must demonstrate the core functionality and behavior including

! As the memory subsystem is outside of the DMA and part of the testbench, the 64 byte memory transaction
requirement doesn’t make much sense in the context of the DMA implementation. Perhaps as a future enhancement,
there should be a burst specification for the MMU interface.

2



interleaved operations.

John, as a measure of flexibility, and to more closely measure real life chip design conditions, I'd like to
suggest that you later add 2 mystery features after the basic features have been implemented. Ideas for
this include: pre-emption, reservation, additional channels, additional ports, additional addressing mode,
etc.

Bluespec 101

Bluespec enables design at a much higher level than RTL, while leaving the specification of the
architecture to the designer, giving him/her 100% control over the quality of the implementation including
latency, area, power and timing. With Bluespec, designs and models are expressed using transactions to
define both internal module behavior within modules and interfaces between modules.

This section is not intended to make you an expert, but it is intended to give you enough background to
understand the design of the DMA controller.

There are four key ideas to keep in mind while looking through the code:

o Explicit state — all state, e.g. registers, RAMs, FIFOs, ROMs, any sub-module,..., is explicitly
specified by the designer. No state is added or subtracted by the Bluespec compiler. Every module
will have its state explicitly coded — though you get to leverage high-level, abstract types for more
succinct and expressive specification of that state. You'll see this state reflected, as is, in the Verilog
generated by the Bluespec compiler.

e Transactions for behavior within modules — instead of ALWAYS blocks, you'll see behavior coded
in structures called RULEs, which describe behavior using isolated transactions. Arule is a
description of what to do for a particular situation. A rule describes what state to update when certain
designer-specified conditions are true. For example, if your design required some things to happen
when an interrupt happened, you would code a rule to perform these things whenever the conditions
for an interrupt were true.

The key advantage of this approach is that designers can code each “RULE” in isolation without
regard to what else is happening in the system — this allows designers to design incrementally (which
really simplifies the complexity of hardware design, where you typically have to pay extremely close
attention to resource contention, such as multiplexing, communication, synchronization). For
example, when you code the interrupt rule, you can do so without worrying about its interaction with
the rest of the design, such as the logic responsible for “normal” operation — you let the compiler
worry about properly flagging and handling unanticipated interactions. The tool is responsible for
scheduling as many rules to run in parallel as possible. During this process, it will identify any shared
resource situations, flag them for you, and automatically insert the proper multiplexing for you as well
as the logic to schedule access to these common resources.

Here’s the syntax for a rule (using Bluespec SystemVerilog (BSV)):

rule <ruleName> (<boolean cond>);
<state update(s)>
endrule

On first blush, a rule sort of operates like an if...then... When the <boolean cond> is TRUE, then the
<state update(s)> occur(s). If there are multiple updates, then all have to happen together, or none
can happen at all.



Well, that's the simplified, introductory view. The power is in the additional sophistication. In addition
to the <Boolean cond>, there are two additional considerations to whether a rule “executes” its state
updates:

The first is that, although most rules will execute in parallel in hardware, Bluespec’s compiler
ensures that each rule executes in the hardware as though it were the ONLY thing operating at
that moment. Another way to describe these rules is ATOMIC transactions. This is what allows
designers to think about and design each rule by itself and get it right — the compiler ensures that
this atomic behavior is maintained in the hardware.

When does this really matter? It comes into play particularly when there are rules that might want
to update common (or shared) state. In RTL hardware design, designers need to keep track of all
the potential updates to shared state AND properly schedule access to this shared state by many
different operations in the hardware. With Bluespec, these shared resource conditions are
automatically recognized and scheduled (albeit with 100% designer visibility and control). And,
the compiler will even recognize when rules have mutually exclusive access to the same state
and ensure that they will always have access to that state when needed.

The end result: you can never have unintended race conditions accessing shared resources.
This eliminates a major source of obscure, subtle errors in hardware design.

As such, a rule’s Boolean condition may be TRUE, but its operation may conflict with another rule
which takes precedence which may prevent its execution in a given cycle (due to an attempt to
access shared state). The compiler generates the optimal parallel execution of rules in hardware
while properly scheduling access to shared resources.

The second consideration has to do with how interfaces work. With Bluespec, all state elements
such as registers and memories have interfaces just like traditional design modules. But with
Bluespec, these interfaces are transactional — they not only describe the wire interfaces, but they
also understand how to pass data and the proper conditions for doing so.

These proper conditions also get considered in determining when a rule can execute. The
easiest way to understand this is to review the following rule example:

rule pass_through (state == FULL_THROTTLE);
y <- fifoln.deq();
z =f(y);
fifoOut.enq(z);

endrule

This rule has an explicit condition that says it should execute when in the “FULL_THROTTLE”
state. But, when it executes, it is supposed to dequeue a value from fifoln and, at the same time,
enqueue the result of f(y) into fifoOut. What if there’s nothing to dequeue from fifoln? What if
fifoOut, the place you want to put the data, is full? Normally, designers have to design the control
logic to check all of these things. With Bluespec, these conditions (for all interfaces of modules
and state, such as registers, FIFOs, ...) become implicit conditions of the rules that use the
interfaces. If ANY of the interfaces is not ready, then the rule cannot execute.

Even in this basic rule example, a lot of complex behavior is simplified. The “pass_through” rule
will move data from one FIFO to another after manipulating it with f() only when:
e In the proper state: state == FULL_THROTTLE
o All the interfaces allow it (in this case: that there is data to be moved from fifoIN
and there is also a place to put it into fifoOut)
e There are no other rules that want to dequeue from fifoln or queue into fifoOut in
this cycle. If there were, only one would be allowed.

4



When the rule executes, all three actions will happen simulateously: data would be dequeued,
passed through the combinational logic in the function f(), and the result would be queued into
another FIFO. A lot of explicit control logic in RTL is handled succinctly and implicitly with rule
and interface transactions with Bluespec.

Transactions for interfaces between modules — as we just introduced in the last section, instead of
port lists, interfaces are transactions defined using rule-based interface methods, as shown below,
using some extensions to the notation of SystemVerilog or SystemC (the former is shown below):

interface FIFOBuf#(type x_t);
method Action enq (x_t x); /I Note: an “Action” means that it changes state
method ActionValue#(x_t) deq (); // Note: an “ActionValue” means that it returns a value
Il and changes state
method Action clear ();
endinterface

[Note: the (type x_t) construct is just SystemVerilog's notation for type parameterization (also known
as polymorphism, or genericity), i.e., x_t is a type variable representing the type of items stored in the
FIFO.]

The enq interface method encapsulates all the ports for enqueuing: the input data bus (whose width
depends on the particular data type to which the generic type x_t is instantiated), the output READY
signal (which tells the outside world when the FIFO is able to accept an enqueue), and the input
ENABLE signal (which the outside world uses to tell the FIFO that it is enqueuing). Similarly, the deq
method encapsulates all the ports required for dequeueing: the output data bus, the output READY
signal (which tells the outside world when valid data is ready to be dequeued) and the input ENABLE
signal. Based on the interface method’s guard conditions in the design (e.g. “not full” for an
enqueue), the compiler generates the ready and enable signals automatically in the output Verilog
RTL.

What does it mean to encapsulate the ports? Let’s look at the code for an enqueue interface method
in a FIFO:

method Action enq(x) if (notFull);
rw_enqg.wset(x); // Pass the input through (when ‘notFull’)
endmethod

The notFull is a Boolean signal that is part of the internal FIFO implementation which simply indicates
whether the FIFO has space or not. While not exposed to an external user of the FIFO, this value
becomes an implicit condition on whether the method can be called and it forms the value behind the
READY signal associated with this method in the generated RTL. This notFull condition becomes an
additional condition that is ANDed into the composite conditions on any rules that use this method.

In general, method arguments become module input data bus ports. Method results (such as that
returned by deq), become output data bus ports. A method can have multiple output data bus ports
because return types can be structs (records) with multiple fields, and vectors. All methods have an
output READY signal (which is the interface method’s condition). All Action and ActionValue methods
(like those shown) have input ENABLE signals. Action and ActionValue methods can cause a state
change inside the module. A third kind of method, which we call Value methods (not shown in this
example), are purely combinational—their results are combinational functions of their arguments and
internal module state. The compiler optimizes away READY and ENABLE signals of a method if it
proves that they are always asserted.

A client module that uses the FIFO contains Rules that invoke the enq and deq methods, as in the
example below:



module mkClient (...);
... instantiate fifo ..

rule upstream (... cond1 ...);
... other actions ...
fifo.enq (expr?);
endrule

rule downstream (... cond?2 ...);
x <- fifo.deq ();
... other actions ...
endrule
endmodule

As discussed before, each rule has an explicit condition, depicted above as the expressions cond1
and condZ2. These are pure combinational Boolean expressions. Each rule also contains one or more
actions that can be executed atomically only if the rule condition is true. For example, the upstream
rule contains an action that enqueues the value of expression expr1 into the FIFO, and the
downstream rule contains an action that dequeues an item x from the FIFO.

The conditions of all methods invoked by a rule are incorporated into the overall condition of the rule.
For example, the ENQ_READY signal is “AND”ed with cond1 to determine the overall condition of the
upstream rule. The DEQ_READY signal is “AND”ed with cond2 to determine the overall condition of
the downstream rule.

So to reiterate and summarize, a rule can only execute if all its conditions permit. When it executes
(we call it: fires), all its actions, including all the actions in all the methods that it invokes, are executed
simultaneously as one composite atomic action. Thus, the upstream rule can only fire if ENQ_READY
is true, and then the enqueueing action becomes part of the overall atomic action of the rule. When
the rule fires, the enqueued data is driven and ENQ_ENABLE is asserted.

The condition of a method or a rule is necessary, but not sufficient, for a rule to fire. In particular,
since rules can share resources (such as the FIFO above), simultaneous firing might not be possible
while maintaining atomicity, i.e., if simultaneous firing would lead to inconsistent states. The compiler
emits scheduling logic to ensure that simultaneous firing is only possible if it maintains atomicity.

When compiling a FIFO implementation, the compiler performs a systematic analysis that infers
whether the enq and deq methods can be operated simultaneously safely, and under what conditions.
Note, different FIFO designs may or may not permit such simultaneous operation.

This interface information is recorded by the compiler with the FIFO implementation. Then, when
compiling mkClient, the compiler uses this information to introduce suitable control logic in mkClient
to guarantee that the upstream and the downstream rules can fire simultaneously only when
conditions permit them to do so safely.

High-level, abstract types, parameters and polymorphism — along with the power to express the
behavior of the design as a set of transactions and transactional interfaces, you'll also see more
expressive design using high-level abstract types, such as structures and enumerated types. Also,
though less emphasized in this particular design, there is the power to parameterize designs along
almost any dimension. Examples include the ability to parameterize with: interfaces (which type of
interface to use), functions (e.g. what kind of sort algorithm), types (polymorphic design), sizes, and
even modules. At compile time, the tool will generate the hardware specified by the chosen
parameters — and elaborate the hardware using the parameters as well as other procedural controls:
conditionals such as if, for loops, and even recursion.



Problem Solution

The design for the DMA controller is outlined in a block diagram in Figure 1. Itis designed such that each
DMA channel has its own independent sets of behavioral descriptions, written with rules, and registers to
maintain the channel’s state. In addition, there are some common rules and registers that are not DMA
channel specific.

Overview of the Basic DMA Operation

Once a DMA operation is configured on a particular channel, these are the basic steps the channel will go
through to move memory from one address to another:

1.

The relevant channel on the DMA controller issues a request for the next 32-bit word from the
source address location. This is done by issuing a read request on the mmu socket for a RD
operation for this channel and source address.

When the response information comes back from the mmu socket, which includes the data at the
previously requested source address, the response data is queued up internally to get ready for
the write operation.

The next queued write operation is issued as a write request on the mmu socket. The request
includes the target address, the data to be written, and an indication that it is a WR operation for
this channel.

The DMA operation for this given 32-bit word is complete when the response information for this
write operation comes back from the mmu socket.

(Steps 1-4 will be repeated until the entire DMA operation is complete.)

When the entire transfer is done, the DMA channel is disabled until subsequent configuration.

Figure 1: Block Diagram of DMA Controller Design



cfg (slave) mmu (master)
cfg ' cfg mmu ¢ mmu
ReqF RespF
|
D N N B B L
startRead destAddrFs
t ‘_/4 dmaEnabledRs
S
’ readAddrRs
finishRead
’ readCntrRs
_
’ currentReadRs responseDataFs
finishWrite
’ currentWriteRs ‘
destAddrRs }‘/
’ Channel 01
2
5 3

DMA Design — Core Operation

The DMA design is straightforward because we can write a separate rule to define each DMA step, as
outlined above. As there are five basic steps in each channel's DMA operations, the Bluespec design has
five rules to describe the behavior for each channel. Since the rules are almost identical for each channel
(the only difference being the channel number), instead of separately writing all 20 rules (5 rules/channel
X 4 channels), we created two functions. One creates rules for the first four steps above. The other
creates the rule that cleans up after a DMA is completed — that is, when the entire transfer is done.

The main design of the DMA controller is in DMA.bsv. After the registers and FIFOs are instantiated in
the design, there is a function called generatePortDMARules(). This function creates the four of the rules
governing the first four steps above. When called (this is done once at compile/elaboration time) with a
channel number, it creates the following four rules for that channel:

startRead - this rule manages the first step described above under basic DMA operation. The explicit
conditions for the rule are:

e The channel must be enabled
e The number of words to read are more than the number currently read

When this rule executes, it issues a read request on the mmu socket interface for the next word to be
transferred. It internally queues up the destination write address for the data to be read. And, finally,
it increments the following addresses and counters for the channel: the current source (read)
address, the number of words read, and the current destination (write) address. All of these
operations happen in parallel, together (or, atomically).



Note that there are also several implicit conditions that need to exist for this rule to execute. One of
the beauties of designing with Bluespec is that all the proper checks for these conditions are
automatically and correctly implemented — avoiding the manual implementation of a lot of tedious and
error-prone control logic. There’s no magic in this — you'll end up with the same implementation as
you’d hand write for a given micro-architecture — but, as the designer, you get to focus on the
functionality and micro-architecture rather than the low-level implementation details. What are these
implicit conditions that are automatically checked?

e The internal FIFO that holds the queued destination write addresses needs to be able
to take another address. It must be non-FULL (or, there must be a simultaneous
dequeue)

e The mmu socket must be able to: 1. Take a request; and 2. Must not be in contention
with another, higher priority, socket request (you'll find in DMA.bsv that startWrite
takes precedence over startRead, as writes take precedence over reads, AND that
lower number channels take precedence over higher number channels).

Writing this rule is simple. You describe the basic conditions of the first step of the DMA and what
you want to happen.

finishRead - this rule manages the second step described above under basic DMA operation. The
explicit condition for the rule is:

e The response info that arrived on the mmu socket is for a read operation on this
respective channel

When this rule executes, it removes the response info from the FIFO in which it is stored. And, it also
internally queues the response info for subsequent use by the write operations.

As with startRead, finishRead can only execute when both its explicit and implicit conditions are true.
So, this rule will execute only when: 1. The response info from the mmu socket interface indicates
that it is for a RD operation on this channel; and, 2. The internal FIFO, responseDataFs, must have
space to hold the response info.

startWrite — this rule manages the third step described above under basic DMA operation. Note that
there is no explicit condition defined for this rule. It should execute whenever it can.

When this rule executes, it issues a write request to the mmu socket interface based on the data at
the head of the responseDataFs FIFO (which holds the response info that came back from the read
operation) and at the head of the destAddrFs FIFO (which holds the destination address of the write).
And, at the same time, it also removes the data at the head of both queues.

Of course, this rule can only execute when several implicit conditions all exist:

e There must be data in both of the internal FIFOs: both a destination address and
response info data from the associated read.

e The mmu socket interface must be ready to take the write request, which means it
can take another request on this cycle AND another write request isn’t being made
from a higher priority channel (remember: in this design, writes always take
precedence over reads within a channel — but, a write from a higher priority (lower
numbered) channel always take precedence over that from a lower priority channel).

When all these conditions are true, then the rule does its stuff. The design is simple and succinct.

finishWrite — this rule manages the fourth step described above under basic DMA operation. lts
operation is pretty simple — if the response info on the mmu socket interface is an acknowledgement of
the write operation for this channel, then dequeue the response and increment the number of writes.

For each channel, there is one more rule to write, which is managed by a separate function called



generateTransferDoneRules(). This function creates a single rule for the final, fifth step described above
under basic DMA operation. It handles the cleanup when a DMA transfer is complete. When the function
is called (this is done once at compile/elaboration time) with a channel number, it creates the following
rule for that channel:

markTransferDone — when a transfer is complete, this rule does all the cleanup. It sets the Enabled flag
for the channel to FALSE and resets to zero the counts of the number of reads and writes completed on
the channel.

DMA Design — Setting Priorities for Channels and Read/Writes

The relative priorities for the rules is established with descending_urgency statements. Within the
function generatePortDMARules(), there is a statement:

(* descending_urgency = “startWrite, startRead” *)

This statement says that write operations take precedence over read operations within each channel.
Explicitly, it says the startWrite rule takes precedence over the startRead rule for this channel.

Later in the DMA design, there is a series of calls to rJoinDescendingUrgency(). These calls establish the
priorities between channel numbers, with lower channel numbers taking precedence over higher channel
numbers.

DMA Design — Configuration

In order to configure the DMA controller’s internal registers, there are two main rules for writing and
reading register configurations, writeConfig and readConfig, respectively. Configuration requests
primarily come through the cnfg socket interface. Though this is the only way to write or read most of the
registers, DMA channels can also separately be enabled through the status interface (per the
specification).

When a configuration request comes in via the configuration socket interface, it first goes into the
configuration request FIFO, cnfRegF. The request operation, reqOp, in the configuration request
determines whether it is a write or a read request. The writeConfig rule or readConfig rule executes
depending on the operation requested — an internal register is either read or written.

There is a function, selectReg(), to support reading and writing configuration registers. This function
identifies the targeted register based on the reqAddr value.

DC Synthesis Results

For details on the synthesis results, including a Verilog netlist for the design and information about the
runs, please refer to the directory: DMA/DCSynthesis. The design was synthesized for both 65 nm and
180 nm.

Here were the main assumptions used for 65 nm:

e Design Compiler Version: X-2005.09-SP3

e Technology: TSMC CLN65GP process

e Library: Artisan 10-Track Advantage (SS Process Spice Models, 0.90V, 125 Degrees C)
e Added Input/Ouput delay = 25% of clock period.

10



And the results for 65 nm were as follows:
e Frequency: 769 MHz
e Area: 27.77 Kgates, 44.43 Kum”2 (1 gate = 1.60 um”2)

Here were the main assumptions used for 180 nm:

e Design Compiler Version: X-2005.09-SP3

e Technology: TSMC CLO18G process

e Library: Artisan SAGE-X (SS Process Spice Models, 1.62V, 125 Degrees C)
e Added Input/Ouput delay = 25% of clock period.

And the results for 180 nm were as follows:

e Frequency: 286 MHz

e Area: 21.33 Kgates, 212.87 Kum”2 (1 gate = 9.98 um*2)

Summary

This paper has outlined the design of a simple 4-channel DMA controller using Bluespec SystemVerilog

(BSV). All of this was only possible because of the high-level abstraction mechanisms, formal semantics

and composability of the constructs in Bluespec SystemVerilog — and, of course, we support these

capabilities in SystemC as well. For the first time, there is:

e A solution that unifies virtual prototyping, architectural exploration and IC implementation.

¢ A high-level solution for control and complex datapaths — but with 100% of the control and quality of
results of hand-coded RTL.

Hopefully you’ve been able to get a taste of why we say that Bluespec is a simpler and more scalable way
of managing complex concurrency & interface protocols vs. RTL. We are also the only one significantly
improving the design of control logic and complex datapaths. Such troublesome designs are:

e The hardest to get right. Managing complex concurrency with lots of shared resources (both local
and across chip) is very hard to implement correctly. Think about the challenges properly managing
back pressure, interface protocols, race conditions, deadlock/livelock conditions...

e The areas where most of the bugs (especially the subtle ones that later bite you) reside.

e The most prominent by far. One of our customers surveyed their IP development roadmap and found
that designs with control logic and complex datapaths represented 90% of their planned projects.

This is where Bluespec shines. Everything else is just RTL. Can you afford not to take a closer look?

11



