
Verilog Nonblocking Assignments With Delays,
Myths & Mysteries

Clifford E. Cummings

Sunburst Design, Inc.

cliffc@sunburst-design.com

ABSTRACT

There is a common misconception that coding sequential logic with nonblocking assignments does
not simulate correctly unless a #1 delay is added to the right hand side of the nonblocking
assignment operator. This is not true. This paper will explain how delays and nonblocking
assignments impact the Verilog event queue. This paper will also detail both good and bad
reasons for adding delays to nonblocking assignments and include guidelines for good RTL
coding styles that permit mixed RTL and gate-level simulation.

SNUG-2002
Boston, MA

Voted Best Paper
2nd Place

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

2

1.0 Introduction

In his book Writing Testbenches[7], Functional Verification of HDL Models, Janick Bergeron
claims that VHDL and Verilog both have the same area under the learning curve[8]. Due to the
misinformation that has been spread through numerous Verilog books and training courses, I am
afraid Bergeron may be right.

When Verilog is taught correctly, I believe the area under the Verilog learning curve is much
smaller and Verilog simulations run much faster than comparable VHDL simulations.

This paper details functionality and important guidelines related to nonblocking assignments and
nonblocking assignments with delays. Before discussing nonblocking assignment functionality and
recommendations, a quick review of the definition of nonblocking assignments is in order:

A nonblocking assignment is a Verilog procedural assignment that uses the "<=" operator inside
of a procedural block. It is illegal to use a nonblocking assignment in a continuous assignment
statement or in a net declaration.

A nonblocking assignment can be viewed as a 2-step assignment. At the beginning of a simulation
time step, the right-hand-side (RHS) of the nonblocking assignment is (1) evaluated and at the
end of the nonblocking assignment the left-hand-side (LHS) variable is (2) updated. A
nonblocking assignment does not "block" other assignments from being executed between the
evaluation and update steps of a nonblocking assignment; hence, the name "nonblocking."

Despite complaints from commercial document spell-checking software, nonblocking is spelled
without a hyphen, as noted in both IEEE Verilog Standards[4][5] and the pending IEEE Verilog
Synthesis Standard[6].

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

3

2.0 The Verilog event queue

The Verilog event queue described in this paper is an algorithmic description. The exact
implementation is not defined in the Verilog Standard but the outcome must duplicate the
functionality of the description.

Section 5.4 of both IEEE Verilog Standards documents, IEEE Std 1364-1995[4] and IEEE Std
1364-2001[5], describes "The Verilog simulation reference model." The reference model is shown
below:

In all the examples that follow, T refers to the current simulation time, and all events are held
in the event queue, ordered by simulation time.

while (there are events) {
 if (no active events) {
 if (there are inactive events) {
 activate all inactive events;
 } else if (there are nonblocking assign update events) {
 activate all nonblocking assign update events;
 } else if (there are monitor events) {
 activate all monitor events;
 } else {
 advance T to the next event time;
 activate all inactive events for time T;
 }
 }
 E = any active event;
 if (E is an update event) {
 update the modified object;
 add evaluation events for sensitive processes to event queue;
 } else { /* shall be an evaluation event */
 evaluate the process;
 add update events to the event queue;
 }
}

Figure 1 - The Verilog simulation reference model

A simplified and restructured version of this algorithm can be examined if #0 delays (inactive
events) are not used. The model can be further simplified if $monitor and $strobe commands
are removed from the algorithm. Note that $monitor and $strobe commands do not trigger
evaluation events and they are always executed last in the current time step. The algorithm has
been reworded in an attempt to add clarification to the algorithm execution process.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

4

Think of T as an integer that tracks the simulation time. At the beginning of a simulation, T is set
to 0, all nets are set to HiZ (z) and all variables are set to unknown (x). All procedural blocks
(initial and always blocks) then become active. In Verilog-2001, variables may be initialized
in their respective declarations and this initialization is permitted either before or after the
procedural blocks become active at time 0.

while (there are events) {

 if (there are active events) {
 E = any active event;
 if (E is an update event) {
 update the modified object;
 add evaluation events for sensitive processes to event queue;
 }
 else { // this is an evaluation event, so ...
 evaluate the process;
 add update events to the event queue;
 }
 }

 else if (there are nonblocking update events) {
 activate all nonblocking update events;
 }

 else {
 advance T to the next event time;

 activate all inactive events for time T;
 }

}

Figure 2 - Modified Verilog simulation reference model

Activating the nonblocking events means to take all of the events from the nonblocking update
events queue and put them in the active events queue. When these activated events are executed,
they may cause additional processes to trigger and cause more active events and more
nonblocking update events to be scheduled in the same time step. Activity in the current time step
continues to iterate until all events in the current time step have been executed and no more
processes, that could cause more events to be scheduled, can be triggered. At this point, all of the
$monitor and $strobe commands would display their respective values and then the
simulation time T can be advanced.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

5

2.1 Event scheduling and re-triggering

As defined in section 5.3 of the IEEE 1364-1995 Verilog Standard, the "stratified event queue" is
logically partitioned into four distinct queues for the current simulation time and additional queues
for future simulation times.

Figure 3 - The Verilog "stratified event queue"

The active events queue is where most Verilog events are scheduled, including blocking
assignments, continuous assignments, $display commands, evaluation of instance and primitive
inputs followed by updates of primitive and instance outputs, and the evaluation of nonblocking
RHS expressions. The LHS variables of nonblocking assignments are not updated in the active
events queue but instead are placed in the nonblocking assign update events queue, where they
remain until they are activated (moved into the active events queue).

As shown in Figure 4, active events such as blocking assignments and contiuous assignments can
trigger additional assignments and procedural blocks causing more active events and nonblocking
assign update events to be scheduled in the same time step. Under these circumstances, the new
active events would be executed before activating any of the nonblocking assign update events.
As shown in Figure 5, after the nonblocking assign updates events are activated, the LHS of the
nonblocking assignments are updated, which can trigger additional assignments and procedural
blocks, causing more active events and nonblocking assign update events to be scheduled in the
same time step. As described in the modified simulation reference model of Figure 2, simulation
time does not advance while there are still active events and nonblocking assign update events to
be processed in the current simulation time.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

6

Figure 4 - Verilog event queue - active events can trigger additional events in the same simulation time step

Figure 5 - Verilog event queue - nonblocking events can trigger additional events in the same simulation time step

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

7

3.0 Review of Important Coding Guidelines with Nonblocking Assignments

In my SNUG2000 San Jose conference paper[2], I mentioned eight important guidelines to follow
when modeling synthesizable logic. For review purposes, the guidelines are included here:

Guideline #1: When modeling sequential logic, use nonblocking assignments.
Guideline #2: When modeling latches, use nonblocking assignments.
Guideline #3: When modeling combinational logic with an always block, use blocking

assignments.
Guideline #4: When modeling both sequential and combinational logic within the same always

block, use nonblocking assignments.
Guideline #5: Do not mix blocking and nonblocking assignments in the same always block.
Guideline #6: Do not make assignments to the same variable from more than one always block.
Guideline #7: Use $strobe to display values that have been assigned using nonblocking

assignments.
Guideline #8: Do not make assignments using #0 delays.

Guidelines #1-#4 are now generally recognized to be good and safe coding styles for RTL coding.
Guideline #5 has been debated and will be further addressed and justified in section 10.0.
Violating guideline #6 will typically yield bizarre mismatches between pre-synthesis and post-
synthesis simulations and frequently neither the pre-synthesis nor post-synthesis simulations will
be functionally accurate. Guideline #7 explains how to display the value of an assignment made
with a nonblocking assignment in the same time step as the nonblocking assignment. Guideline #8
basically warns that a #0 assignment causes events to be scheduled in an unnecessary intermediate
event queue with often confusing results. In general a #0 assignment is not necessary and should
never be used.

Exceptions to these guidelines can be safely implemented, but I would ask myself the following
three questions when considering exceptions to the recommended coding styles:

1. Does the exception coding style significantly improve simulation performance more than an
equivalent coding style that follows the above guidelines? Does it make the simulation
significantly faster?

2. Does the exception make RTL or verification coding significantly easier to understand than an
equivalent coding style that follows the above guidelines? Does it make the code more
understandable?

3. Does the exception significantly facilitate RTL or verification coding more than an equivalent
coding style that follows the above guidelines? Does it make the coding effort much easier?

Much faster? More understandable? Easier to code? If not, then the exception is generally not
worth making.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

8

Section 10.0 will address these questions with respect to Guideline #5, the guideline from this list
that is most frequently challenged in public forums.

4.0 For 0-delay RTL modeling, nonblocking assignments finish first!

When testing a 0-delay RTL model, stimulus inputs typically are applied on an inactive clock edge
and RTL sequential logic activity happens on the active clock edge. For the example in this
section, the posedge clk will be considered the active clock edge.

Consider the logic shown in Figure 6. The 0-delay RTL code for this model is shown in Example
1, and a simple stimulus testbench for this model is shown in Example 2.

Figure 6 - Simple sequential logic with one clock

module sblk1 (
 output reg q2,
 input a, b, clk, rst_n);
 reg q1, d1, d2;

 always @(a or b or q1) begin
 d1 = a & b;
 d2 = d1 | q1;
 end

 always @(posedge clk or negedge rst_n)
 if (!rst_n) begin
 q2 <= 0;
 q1 <= 0;
 end
 else begin
 q2 <= d2;
 q1 <= d1;
 end
endmodule

Example 1 - 0-delay RTL model for simple sequential logic with one clock

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

9

module tb;
 reg a, b, clk, rst_n;

 initial begin // clock oscillator
 clk = 0;
 forever #10 clk = ~clk;
 end

 sblk1 u1 (.q2(q2), .a(a), .b(b), .clk(clk), .rst_n(rst_n));

 initial begin // stimulus
 a = 0; b = 0;
 rst_n <= 0;
 @(posedge clk);
 @(negedge clk) rst_n = 1;
 a = 1; b = 1;
 @(negedge clk) a = 0;
 @(negedge clk) b = 0;
 @(negedge clk) $finish;
 end
endmodule

Example 2 - Simple testbench to apply stimulus to the 0-delay RTL model for simple sequential logic

The testbench has a free-running clock oscillator with the clk initialized to 0 for the first half-
cycle and the initial block sets initial values for both the a and b inputs and then resets the
circuit until one cycle into the simulation (the first official negedge clk). On the first official
negedge clk, the reset is removed and the primary inputs to the model, a and b, are both
changed to 1's. On the next two negedge clks, first the a-input and then the b-input are
successively changed to 0's. One negedge clk later the simulation is stopped with a $finish
command.

From this simple sequence of stimulus inputs, we can see interesting aspects of how stimulus and
RTL events are scheduled in the Verilog event queue.

First note that the primary inputs (a and b) and any RTL combinational logic connected to the
primary inputs (d1 and d2) change on the negedge clk as shown in Figure 7. This typically
means that only active events are scheduled and executed on the inactive clock edge, as shown in
Figure 8.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

10

Figure 7 - Combinational module inputs are changed on the negedge clk

Figure 8 - Verilog event queue - combinational inputs @negedge clk

In the Verilog event queue, nonblocking assignments are updated after the active events (blocking
assignments) are executed, but within an RTL 0-delay, cycle-based model, in each time step
where an active clock edge occurs, all nonblocking assignments will actually be updated before
executing the combinational blocking assignments in the same simulation time step. Why?

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

11

Figure 9 - Verilog event queue - sequential logic+ @posedge clk

Figure 10 - Sequential logic nonblocking assignment outputs change first on posedge clk

As shown in the Verilog event queue of Figure 9 and the waveform display of Figure 10, a clock
edge triggers the sequential always block(s). The outputs of the sequential always block(s) will
schedule updates at the end of the current time step. All the nonblocking update events are
activated and updated, which will then trigger the combinational logic, also in the same time step
as shown in Figure 11. The combinational logic will settle out and remain unchanged until the

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

12

next posedge clk. On the next posedge clk, the sequential logic will again be updated with
the stable combinational values and again trigger the combinational logic.

Figure 11 - Combinational logic blocking assignment outputs change second after nonblocking assignments
complete

5.0 Inertial & transport delays

Inertial delay models are simulation delay models that filter pulses that are shorter than the
propagation delay of Verilog gate primitives or continuous assignments. Inertial delays swallow
glitches!

Inertial delays are very easy for a simulator to implement because the simulator only keeps track
of what the next assignment value is going to be and when it will occur. If another assignment is
made to the same variable before the currently scheduled event is executed, the simulator replaces
the earlier but unrealized scheduled event with the new event value and the new time when the
event will occur. By default, both Verilog and VHDL simulate using inertial delays.

Transport delay models are simulation delay models that pass all pulses, including pulses that are
shorter than the propagation delay of corresponding Verilog procedural assignments. Transport
delays pass glitches, delayed in time.

The VHDL language models transport delays by adding the key word "transport" to assignments.

Verilog can model RTL transport delays by adding explicit delays to the right-hand-side (RHS) of
a nonblocking assignment.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

13

5.1 Verilog Transport Delays in gate-level simulations

By default, Verilog gate-level models are pure inertial-delay models but there are generally
available Verilog command-line switches that can be used to alter this behavior for gate-level
simulations.

Many ASIC gate-level models are written with delays inside of specify blocks that permit
simulation pulses to be passed using transport delay models when certain command line switches
are invoked. Typically, Verilog simulators use the command line switches “reject” +pulse_r/%
and “error” +pulse_e/% where the percent value (%) is equal to 0-100 in increments of 10.

The +pulse_r/R% switch forces pulses that are shorter than R% of the propagation delay of the
device being tested to be "rejected" or ignored. The +pulse_e/E% switch forces pulses that are
shorter than E% but longer than %R of the propagation delay of the device being tested to be an
"error" causing unknowns (X's) to be driven onto the output of the device. Any pulse greater than
E% of the propagation delay of the device being tested will propagate to the output of the device
as a delayed version of the expected output value.

Consider a simple delay buffer model with a propagation delay of 5ns, where the delay has been
added to a Verilog specify block. The Verilog code for this gate-level model is shown in Example
3 and a simple testbench stimulus block to test the model is shown in Example 4.

`timescale 1ns/1ns
module delaybuf (output y, input a);
 buf u1 (y, a);

 specify
 (a*>y) = 5;
 endspecify
endmodule

Example 3 - Delay buffer (delaybuf) with specify-block path delay of 5ns

`timescale 1ns/1ns
module tb;
 reg a;
 integer i;

 delaybuf i1 (.y(y), .a(a));

 initial begin
 a=0;
 #10 a=~a;
 for (i=1;i<7;i=i+1) #(i) a=~a;
 #20 $finish;
 end
endmodule

Example 4 - Simple stimulus testbench for the delay buffer (delaybuf) model

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

14

For this delaybuf model, the default will be a pure inertial delay-mode simulation and all input
pulses less than 5ns in width will be filtered or ignored.

This delaybuf model can be simulated with pure transport delays by turning on switches that
neither cause any input signal to be rejected nor cause any input signal to be treated as an error
using the command line switches shown below:

vcs -RI +v2k tb.v delaybuf.v +pulse_r/0 +pulse_e/0

Figure 12 - Pure transport delays: delaybuf waveform display using +pulse_r/0 +pulse_e/0 switches

Unfortunately, to get true transport delay simulation results, simulators also often require the
+transport_path_delays switch to be used, to achieve the simulation results shown in
Figure 13.

vcs -RI +v2k tb.v delaybuf.v +pulse_r/0 +pulse_e/0 +transport_path_delays

Figure 13 - Corrected transport delays: delaybuf waveform display using +pulse_r/0 +pulse_e/0
+transport_path_delays switches

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

15

This same delaybuf model can be simulated with pure "error" delays by turning on switches
that cause no input signal to be rejected but that do cause all input signals shorter than the
propagation delay of the device to be treated as an error using the command line switches shown
below:

vcs -RI +v2k tb.v delaybuf.v +pulse_r/0 +pulse_e/100

Figure 14 - Pure "error" delays: delaybuf waveform display using +pulse_r/0 +pulse_e/100 switches

These switches command the simulator to not reject any pulses (+pulse_r/0), but pass
unknowns for any pulse that is less than 100% of the propagation delay of the gate
(+pulse_e/100). This causes all short pulses to be passed to the device outputs as unknowns.

This same delaybuf model can be simulated with pure inertial delays by turning on switches that
cause all input signals shorter than the propagation delay of the device to be ignored using the
command line switches:

vcs -RI +v2k tb.v delaybuf.v +pulse_r/100 +pulse_e/100

Figure 15 - Pure inertial delays: delaybuf waveform display using +pulse_r/0 +pulse_e/0 switches

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

16

The first switch commands the simulator to reject any input pulse shorter than 100% of the
propagation delay of the device (+pulse_r/100). Since the percentage of the "error" switch
matches the percentage of the "reject" switch, this forces the simulator to not pass unknowns to
the outputs of the device. This is a pure inertial delay model style.

Real hardware is neither pure-inertial nor pure-transport in behavior. Real hardware will generally
reject very short inputs, pass longer inputs, and intermediate inputs will pass through some
devices and not others depending on the process tolerances used to fabricate the chip when it was
made (process variations).

This same delaybuf model can be simulated with this same realistic mixture of inertial,
uncertain and transport delays by turning on switches that cause short input signals to be rejected,
long input signals to be passed, and intermediate input signals to propagate as unknowns. The
command line switches to reject pulses shorter than 40% of the specified delay, pass error pulses
for all pulses greater than 40% but less than 80% of the specified delay, and pass all pulses that
are greater than 80% of the specified delay, are shown below:

vcs -RI +v2k tb.v delaybuf.v +pulse_r/40 +pulse_e/80

Figure 16 - Mixed delays: delaybuf waveform display using +pulse_r/40 +pulse_e/80 switches

NOTE: as shown in the example design in this section, +pulse switches only work with the
Verilog specify block delays, not primitive delays.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

17

6.0 Verilog delay line models

In the early 1990's I posted a question to the comp.lang.verilog newsgroup asking, "How does
one model a delay line using Verilog?"

A number of answers were posted in response. After receiving a number of rather complex
methods to accomplish the goal, one engineer[15] sent an elegantly simple model similar to the
model shown in Example 5. This is an example of a delay line model with one input and two
output taps. The first output displays the same waveform as the input signal but delayed by 25ns.
The second output displays the same waveform as the input signal but delayed by 40ns.

`timescale 1ns / 1ns
module DL2 (y1, y2, in);
 output y1, y2;
 input in;
 reg y1, y2;

 always @(in) begin
 y1 <= #25 in;
 y2 <= #40 in;
 end
endmodule

Example 5 - Verilog-1995 delay line model with two output taps

A parameterized version of the same model with multiple delay line taps is shown below:

`timescale 1ns / 1ns
module DL2 (y1, y2, in);
 output y1, y2;
 input in;
 reg y1, y2;

 parameter TAP1 = 25;
 parameter TAP2 = 40;

 always @(in) begin
 y1 <= #TAP1 in;
 y2 <= #TAP2 in;
 end
endmodule

Example 6 - Parameterized Verilog-1995 delay line model with two output taps

And finally, a parameterized Verilog-2001 version of the same model with multiple delay line taps
is shown on the next page:

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

18

`timescale 1ns / 1ns
module DL2
 #(parameter TAP1 = 25,
 TAP2 = 40)
 (output reg y1, y2,
 input in);

 always @(in) begin
 y1 <= #TAP1 in;
 y2 <= #TAP2 in;
 end
endmodule

Example 7 - Parameterized Verilog-2001 delay line model with two output taps

Since Verilog delays are ignored by synthesis tools, what do delay lines have to do with synthesis?
Delays may be important to mixed RTL and gate simulations. More on this subject is discussed in
section 11.0.

An important guideline that should be noted in every Verilog book (but often is missing) and
taught in every beginning Verilog class (but often is not), is that whenever an engineer adds a
#delay to a module, the module should be preceded by a `timescale directive; otherwise, the
delays in the module are at the mercy of the last `timescale directive declared, which may not
match the desired timing of the current module being compiled. Compiler directives, such as the
`timescale directive, are compile-order dependent.

Guideline: Add a `timescale directive in front of every module that contains #delays.

7.0 The #1 delay

To delay or not to delay, that is the question!

Myth: #1 delays are required to fix problems with nonblocking assignments.

I have worked with many engineers at many companies and have often seen engineers add #1 to
the RHS of all nonblocking assignments. When I ask engineers why they have added delays to
their nonblocking assignments, frequently the answer given is "Verilog nonblocking assignments
are broken and adding #1 fixes the problem!"

Truth: Nonblocking assignments are not broken. The engineer's understanding is broken!

There are a few good reasons and many bad reasons to add #1 to the RHS of nonblocking
assignments. Some of these reasons include:

Good reason #1: Adding #1 to nonblocking assignments will cause an output change to be
delayed by 1 time unit. This often eases the debugging task when using a waveform viewer.

Consider the register models in Example 8 and Example 9.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

19

`timescale 1ns / 1ns
module reg8 (q, d, clk, rst_n);
 output [7:0] q;
 input [7:0] d;
 input clk, rst_n;
 reg [7:0] q;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= #1 8'b0;
 else q <= #1 d;
endmodule

Example 8 - Verilog-1995 register model with #1 delays

`timescale 1ns / 1ns
module reg8 (
 output reg [7:0] q,
 input [7:0] d,
 input clk, rst_n
);

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= #1 8'b0;
 else q <= #1 d;
endmodule

Example 9 - Verilog-2001 register model with #1 delays

These two models will exhibit an output delay of 1ns after a posedge clk or after a negedge
rst_n. The delay has effectively implemented a 1ns clk-to-q or rst_n-to-q delay, which can be
easily interpreted when viewed with a waveform viewer. For some engineers, the small delay
between rising-clock and output-change in the waveform display is sometimes easier to interpret
than when the clock edge and output change are displayed in the same waveform time tic.

The small delay in the waveform viewer can also make it easy to see what the values of the
sequential logic outputs were just prior to the clock edge, by placing the waveform viewer cursor
on the clock edge itself, most waveform viewing tools will display the respective binary, decimal
or hex values next to the signal names near the left side of the waveform display. Then to see the
updated values, the cursor is moved to any transition shown 1ns later in the same waveform
display[1].

Good reason #2: Most high-performance flip-flops have hold times between 0ps and 800ps.
Adding #1 to RTL models that drive gate-level models will generally fix any problems associated
with mixed RTL and gate-level simulations (assuming a `timescale time-step of 1ns).
Exceptions would include any gate-level model with a required hold time of greater than 1ns or
clock distribution models with a skew of greater than 1ns.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

20

Bad reason #1: "Verilog nonblocking assignments are broken!" WRONG! Nonblocking
assignments work fine, even without RHS #1 delays. If you add delays to the RHS of
nonblocking assignments without knowing the correct reason for adding the delays, at some point
you will likely run into problems with mixed RTL and gate-level simulations where the gate-level
model has hold time delays in excess of 1ns, or the clock distribution network has a skew of
greater than 1ns, and the simulation will fail.

Bad reason #2: VCS has built-in optimizations for high-speed cycle-based simulation and some
cycle-based simulators, like VCS, slow down significantly when #1 delays are added to the RHS
of nonblocking assignments.

8.0 VCS simulation benchmarks using #1 delays

If you could dramatically improve the performance of your simulator by making one small RTL-
coding change to your designs, would you be interested?

What is the impact to VCS simulation performance by adding #1 delays to the RHS nonblocking
assignments?

To answer the second question, the circuit I used to benchmark VCS simulator performance is a
worst-case design, comprising a total of 20,000 flip-flops configured as 20 pipeline stages of
1000-bit pipeline registers as shown in Figure 17. Although this is not representative of a typical
ASIC design, it does directly demonstrate the impact of adding delays to the sequential blocks of
your RTL code.

Figure 17 - Benchmark design with 20,000 flip-flops (dffpipe.v)

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

21

The second benchmark circuit is the same 20,000 flip-flop pipeline design but each flip-flop has
been coded with a d-input inverter and a q-output inverter, just to add lots of combinational
simulation transitions to the design as shown in Figure 18. Again this is not a typical ASIC design,
but the 40,000 extra inversions should cause more combinational events to the execute during the
second benchmark simulation.

The testbench for these benchmark circuits applied a sequenced series of eight patterns, repeated
1,000,000 times. A large quantity of vectors was chosen to insure that the recorded CPU Times
would be based on event-activity, as opposed to compile time and simulation startup overhead.

Figure 18 - Benchmark design with 20,000 flip-flops and 40,000 inverters (dffpipe.v)

The flip-flops for the benchmark circuits were coded with five small delay variations: (1)
nonblocking assignments with no delays, (2) nonblocking assignments with #1 delays, (3)
blocking assignments with #1 delays (NOT RECOMMENDED), (4) nonblocking assignments
with #0 delays (using `define macro substitution), and (5) nonblocking assignments with no
delays (using `define macro substitution to remove the delay). The corresponding code
fragments are shown in Example 10 - Example 14.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

22

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 0;
 else q <= d;

Example 10 - Sequential logic coding style with no delays

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= #1 0;
 else q <= #1 d;

Example 11 - Sequential logic coding style with explicit #1 delays

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q = #1 0;
 else q = #1 d;

Example 12 - Sequential logic coding style with explicit #1 blocking delays (NOT RECOMMENDED!)

 `define D #0
 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= `D 0;
 else q <= `D d;

Example 13 - Sequential logic coding style with explicit #0 delays

 `define D
 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= `D 0;
 else q <= `D d;

Example 14 - Sequential logic coding style with explicit 0-delays by macro substitution

The simulations were run on two different computers running VCS version 6.2. The first was an
IBM ThinkPad T21 laptop computer with Pentium III-850MHz processor, 384MB RAM,
running Redhat Linux 6.2. The VCS license server was run form this laptop. The second
computer was a SUN Ultra-Sparc 80 with 1GB RAM and running Solaris 8. Again, the license
server for the SUN workstation was the Linux laptop computer.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

23

The benchmark results are not intended to show superiority of one CPU or operating system over
another. These just happen to be the two CPUs I had readily available in my office to run the
benchmarks.

IBM ThinkPad T21, Pentium III-850MHz, 384MB RAM, Redhat Linux 6.2
VCS Version 6.2 - Simulation ended at Time: 800002150 ns

DFF pipeline (no inverters)
CPU Time
(seconds)

Speed compared to no-delay
model

No delays 292.920 Baseline no-delay model

Nonblocking #1 delays
(<= #1)

376.460 29% slower

Blocking #1 delays
(= #1 NOT RECOMMENDED)

358.240 22% slower

Nonblocking #0 delays
(<= `D and `define D #0)

307.630 5% slower

Nonblocking blank delays
(<= `D and `define D <no_value>)

292.880 ~same speed

Table 1 - DFF pipeline simulations - IBM ThinkPad running Linux

IBM ThinkPad T21, Pentium III-850MHz, 384MB RAM, Redhat Linux 6.2
VCS Version 6.2 - Simulation ended at Time: 800002150 ns

DFF pipeline with inverters
CPU Time
(seconds)

Speed compared to no-delay
model

No delays 390.140 Baseline no-delay model

Nonblocking #1 delays
(<= #1)

462.230 18% slower

Blocking #1 delays
(= #1 NOT RECOMMENDED)

458.750 18% slower

Nonblocking #0 delays
(<= `D and `define D #0)

390.320 ~same speed

Nonblocking blank delays
(<= `D and `define D <no_value>)

390.630 ~same speed

Table 2 - DFF pipeline with combinational logic simulations - IBM ThinkPad running Linux

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

24

SUN Ultra 80, UltraSPARC-II 450MHz, 1GB RAM, Solaris 8
VCS Version 6.2 - Simulation ended at Time: 800002150 ns

DFF pipeline (no inverters)
CPU Time
(seconds)

Speed compared to no-delay
model

No delays 438.090 Baseline no-delay model

Nonblocking #1 delays
(<= #1)

839.270 92% slower

Blocking #1 delays
(= #1 NOT RECOMMENDED)

548.110 25% slower

Nonblocking #0 delays
(<= `D and `define D #0)

447.70 2% slower

Nonblocking blank delays
(<= `D and `define D <no_value>)

437.960 ~same speed

Table 3 - DFF pipeline simulations - SUN Workstation running Solaris

SUN Ultra 80, UltraSPARC-II 450MHz, 1GB RAM, Solaris 8
VCS Version 6.2 - Simulation ended at Time: 800002150 ns

DFF pipeline with inverters
CPU Time
(seconds)

Speed compared to no-delay
model

No delays 668.170 Baseline no-delay model

Nonblocking #1 delays
(<= #1)

1,112.130 66% slower

Blocking #1 delays
(= #1 NOT RECOMMENDED)

777.440 16% slower

Nonblocking #0 delays
(<= `D and `define D #0)

744.160 11% slower

Nonblocking blank delays
(<= `D and `define D <no_value>)

673.950 1% slower

Table 4 - DFF pipeline with combinational logic simulations - SUN Workstation running Solaris

Based on these benchmark results, it is clear there are significant increases in simulation
performance possible simply by removing the #1 delays from the RHS of nonblocking
assignments.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

25

8.1 Conditionally compiled #1 delays

For engineers interested in retaining the #1 delays for debugging purposes, I recommend that the
#1 delays be added to all designs using a common macro definition as shown in Example 15, and
code all sequential logic using `D values on the RHS of nonblocking assignments as shown in
Example 16. `D was chosen because "D" stands for delay and it is also very short (half as many
characters as typing `DLY).

// To enable <= #1 (NonBlocking Delays), simulate with the
following
// command: +define+NBD
// Default is to simulate with the higher performance no-delay
`ifdef NBD
 `define D #1
`else
 `define D
`endif

Example 15 - Macro definitions for no-delay and explicit #1-delay simulations

// Typical sequential logic coding style
always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= `D 0;
 else q <= `D d;

Example 16 - Typical sequential logic coding style

Using the code from Example 15 and Example 16 with the command line switch +define+NBD
(NBD: NonBlocking Delays) would make all properly coded sequential logic behave equivalent to
the code shown in Example 17, with added #1 delays and degraded simulation performance.

// With +define+NBD - the equivalent code is:
// *** slower simulations ***
always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= #1 0;
 else q <= #1 d;

Example 17 - Equivalent sequential logic coding style after #1 macro substitution

Using the code from Example 15 and Example 16 without the command line switch
+define+NBD would make all properly coded sequential logic behave equivalent to the code
shown in Example 18, with no delays and significantly increased simulation performance.

// With NO +define+NBD - the equivalent code is:
// *** faster simulations ***
always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 0;
 else q <= d;

Example 18 - Equivalent sequential logic coding style after no-delay macro substitution

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

26

NOTE: After sharing this benchmark information with Mark Warren, Technical Director of the
Verification Group at Synopsys, Mark wanted me to note that VCS simulations of a typical
design could experience a 0%-200% increase in simulation performance with a 30%-50% increase
being typical, as opposed to the 18%-92% increase reported with the contrived benchmark
circuits in this section[12].

The ratio of combinational logic to sequential logic in an actual ASIC design and the possible
inclusion of PLI code could indeed mean that the percentage improvement in simulation
performance would in all likelihood be closer to the 30%-50% figure. However, it is interesting to
observe the tremendous difference in simulator performance related to adding #1 delays to the
nonblocking assignments.

8.2 The VCS +nbaopt Command Line Switch

VCS has a command line switch called "+nbaopt" designed to optimize nonblocking assignments
by removing the #1 delays that might follow a nonblocking assignment.

Using the +nbaopt switch did significantly improve the simulation performance of the model
with #1 delays, but the design still ran 3%-16% slower than an equivalent model without delays
or a model with macro-defined blank delays. As could be expected, using the +nbaopt switch did
not increase the performance of the models that previously had no delays.

IBM ThinkPad T21, Pentium III-850MHz, 384MB RAM, Redhat Linux 6.2
VCS Version 6.2 - including the +nbaopt command switch

DFF pipeline (no inverters)
CPU Time
(seconds)

Speed compared to no-delay
model

No delays +nbaopt 293.770 Baseline no-delay model

Nonblocking #1 delays +nbaopt
(<= #1)

311.070 6% slower

Blocking #1 delays +nbaopt
(= #1 NOT RECOMMENDED)

357.360 22% slower

Table 5 - DFF pipeline simulations - no delays vs #1 delays and +nbaopt command switch - IBM ThinkPad
running Linux

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

27

SUN Ultra 80, UltraSPARC-II 450MHz, 1GB RAM, Solaris 8
VCS Version 6.2 - including the +nbaopt command switch

DFF pipeline (no inverters)
CPU Time
(seconds)

Speed compared to no-delay
model

No delays +nbaopt 439.000 Baseline no-delay model

Nonblocking #1 delays +nbaopt
(<= #1)

448.630 2% slower

Blocking #1 delays +nbaopt
(= #1 NOT RECOMMENDED)

547.580 25% slower

Table 6 - DFF pipeline simulations - no delays vs #1 delays and +nbaopt command switch - SUN Workstation
running Solaris

8.3 The VCS +rad Command Line Switch

VCS has a command line switch called "+rad" designed to optimize designs for improved
simulation performance. Mark Warren of Synopsys reports that +rad is actually a family of
optimizations that will make improvements to non-timing designs, such as speeding up logic and
event propagation, but +rad does not affect delay scheduling[12].

Note that the +rad switch is not just for cycle-based simulations. Mark Warren reports that there
are some designs that will give very large speedups with +rad (typically the uglier the code, the
larger the speedup).

When I tested the +rad switch on the Linux laptop computer, the no-delay RTL models ran
23%-26% faster than simulations without the +rad switch. Even though all simulations ran faster
with the +rad switch, the models with #1 delays were still about 25% slower than comparable
models without the delays. It was also interesting to note that the +rad switch helped models
with the macro-added #0 delay to match or slightly beat the simulation performance of models
with no delays.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

28

The same simulations were not tested on the SUN Solaris workstation.

IBM ThinkPad T21, Pentium III-850MHz, 384MB RAM, Redhat Linux 6.2
VCS Version 7.0 (early release) (using +rad switch)

DFF pipeline (no inverters)
CPU Time
(seconds)

Speed compared to no-delay
model

No delays 233.540 Baseline no-delay model

Nonblocking #1 delays
(<= #1)

293.250 26% slower

Blocking #1 delays
(= #1 NOT RECOMMENDED)

289.940 24% slower

Nonblocking #0 delays
(<= `D and `define D #0)

229.290 2% faster

Nonblocking blank delays
(<= `D and `define D <no_value>)

233.100 ~same speed

Table 7 - DFF pipeline simulations - early version of VCS 7.0 and +rad command switch - IBM ThinkPad
running Linux

IBM ThinkPad T21, Pentium III-850MHz, 384MB RAM, Redhat Linux 6.2
VCS Version 7.0 (early release) (using +rad switch)

DFF pipeline with inverters
CPU Time
(seconds)

Speed compared to no-delay
model

No delays 235.710 Baseline no-delay model

Nonblocking #1 delays
(<= #1)

294.480 25% slower

Blocking #1 delays
(= #1 NOT RECOMMENDED)

288.910 23% slower

Nonblocking #0 delays
(<= `D and `define D #0)

228.410 3% faster

Nonblocking blank delays
(<= `D and `define D <no_value>)

234.510 2% faster

Table 8 - DFF pipeline with combinational logic simulations - early version of VCS 7.0 and +rad command switch
- IBM ThinkPad running Linux

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

29

9.0 Multiple common clocks and race conditions?

Are #1 nonblocking assignment delays required to avoid race conditions when multiple common
clocks are generated in the same time step? If sequential logic is generated using nonblocking
assignments, the answer is no (unless one of the clocks is incorrectly generated from the other
clock signal using a nonblocking assignment, such as: clk1b <= clk1a;)

Consider the case where clk1a and clk1b are two copies of the same clk1 signal as shown in
Figure 19. In this case posedge clk1a and posedge clk1b occur at the same simulation time.
Can there be a race condition caused by these two clock signals being generated from different
blocks of RTL code? If the sequential logic driven by these two clocks is properly coded with no-
delay nonblocking assignments, the answer is no.

Figure 19 - Simple sequential logic driven by two buffered copies of clk1

For this example, all posedge clk1a nonblocking assignments will be scheduled to be updated in
the nonblocking assignments update queue. Then all of the posedge clk1b nonblocking
assignments will be scheduled to be updated in the nonblocking assignments update queue before
the clk1a updates have been activated in the same time step. This insures that all registered logic
will be correctly pipelined between the no-skew clock domains before the combinational logic is
updated.

10.0 Avoid always blocks with mixed blocking and nonblocking assignments

Now lets reexamine guideline #5 from section 3.0:

Guideline #5: Do not mix blocking and nonblocking assignments in the same always block.

Of the guidelines that were given in my SNUG2000 paper on nonblocking assignments[2], this
guideline has probably been the most challenged in public forums. Paul Campbell of Verifarm Inc
points out that one "can safely mix blocking assignments (without delays) that model
combinatorial logic (ie temporary variables) and non-blocking assignments that model flops in the
same edge triggered always statement[13]."

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

30

Paul is of course correct, but the coding style has its disadvantages, including:

1. It can be confusing to understand the event scheduling in this always block.
2. One might forget that only one nonblocking assignment should be used and that the

nonblocking assignment should be listed last.
3. In a zero delay model, inputs and their resultant flip-flop outputs will change on the same

clock edge yielding a confusing simulation waveform display.

Consider the simple circuit of Figure 20 and the properly coded Verilog model shown in Example
19, without mixed blocking and nonblocking assignments in the same always block. This model
follows the coding style guidelines detailed in section 3.0.

Figure 20 - Simple circuit to test mixed blocking & nonblocking assignment coding styles

module blk1 (
 output reg q, // registered output
 output y, // combinational output
 input a, b, c, // combinational inputs
 input clk, rst_n); // control inputs
 wire d;

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 0;
 else q <= d;

 assign d = a & b;
 assign y = q & c;
endmodule

Example 19 - Properly coded model with no mixed blocking and nonblocking assignments in the same always
block

When synthesized, the Example 19 RTL code compiles to the logic shown in Figure 21 (for
schematic clarity, the LSI 10K library that is included in the default Synopsys tools distribution
was used and set_dont_use commands were run to remove all of the scan flip-flops prior to
synthesis compilation).

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

31

Figure 21 - Synthesized version of the blk1 model

The Verilog code in Example 20 also correctly models the simple circuit of Figure 20, but this
code violates the guideline to prohibit blocking and nonblocking assignments in the same always
block. This coding style is frequently employed by engineers with a former VHDL background
who were accustomed to mixing variable and signal assignments in the same process to increase
VHDL simulation performance. There is no simulation performance improvement achieved by
using this coding style in Verilog.

module blk1a (
 output reg q, // registered output
 output y, // combinational output
 input a, b, c, // combinational inputs
 input clk, rst_n); // control inputs

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 0;
 else begin: logic
 reg d; // combinational intermediate signal
 d = a & b;
 q <= d;
 end

 assign y = q & c;
endmodule

Example 20 - Improperly coded model with mixed blocking and nonblocking assignments in the same always
block

Although the Verilog model of Example 20 simulates and synthesizes correctly, there are good
reasons to avoid this coding style. The most obvious reason to avoid this coding style is to reduce
confusion while interpreting signal transitions in a waveform viewer during debug of this design.
The mixed coding style means that the internal combinational output d does not update when the
inputs to the and gate change. The only time the d-signal updates (in the waveform viewer) is on
a clock edge or at reset assertion. As can be seen in Figure 22, on the second rising clk edge, the
clk has changed, the d-input to the flip-flop has changed and the q-output of the flip-flop has

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

32

changed. For a very large design, an engineer is going to need to spend a lot of time rationalizing
why inputs and resultant outputs are both changing on the same clock edge. Input changes on
clock edges do not happen in real hardware, this is simply a side-effect of this unusual coding
style.

Figure 22 - Confusing waveform display caused by mixed assignments in a sequential always block

Although it is not obvious in Figure 22, the intermediate signal d is not in the same simulation
scope as the rest of the signals in this module. Displaying transitions on the d-signal requires that
the logic.d hierarchical signal name (d is declared in the named-block called "logic") must be
added to the waveform display.

module blk1b (
 output reg q, // registered output
 output y, // combinational output
 input a, b, c, // combinational inputs
 input clk, rst_n); // control inputs

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 0;
 else begin: logic
 reg d; // combinational intermediate signal
 d = a & b;
 q <= d;
 d = 1'bx; // to avoid waveform confusion
 end

 assign y = q & c;
endmodule

Example 21 - Improperly coded model with mixed assignments and waveform canceling code

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

33

I have been told of one engineer who codes with a mixed assignment style that includes assigning
X's to all of the intermediate local signals after making the nonblocking assignment, just to make
sure nobody can display the intermediate signals in a waveform display and become confused! The
highly unusual coding style is shown in Example 21. In this coding style, the intermediate signals
are displayed as unknowns for the entire simulation, even though they took on momentary values
to update the appropriate sequential logic. This seems like a lot of trouble just to use the mixed
coding style.

Upon examination, I believe the coding style of mixing blocking and nonblocking assignments in
the same always block will not simulate any faster, is not quite as understandable (requires a
better understanding of Verilog event scheduling) and is no easier to code (more opportunities to
incorrectly mix blocking and nonblocking assignments and quite confusing in a simulation
waveform display). Even though the mixed style can work, I consider the mixed style to be more
error prone for coding and for waveform interpretation. Since the coding style offers no distinct
advantage over other recommended coding styles, I stand by the guideline to not mix blocking
and nonblocking assignments in the same always block.

Note that the safest, but still not recommended, way to mix assignments is to declare the
intermediate d-signal as a local variable in a named block as shown in Example 21. The reason
this is the safest technique is because if the d-signal is declared within the global-module space,
and if the signal is accidentally either directly or through other combinational equations,
connected to an output port as shown in Example 22, synthesis tools will infer an extra flip-flop
for this signal as shown in Figure 23.

module blk2a (
 output reg q, q2, // registered outputs
 output y, // combinational output
 input a, b, c, // combinational inputs
 input clk, rst_n); // control inputs
 reg d; // combinational intermediate signal

 always @(posedge clk or negedge rst_n)
 if (!rst_n) q <= 0;
 else begin
 d = a & b;
 q <= d;
 end

 assign y = q & c;

 always @(d) q2 = d;
endmodule

Example 22 - Improperly coded model with mixed assignments and an extra connection to the d-signal

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

34

Figure 23 - Synthesized version of the blk2a model with extra sequential logic

11.0 Mixed RTL & gate simulations

What are mixed RTL and gate-level simulations?

On large ASIC projects with multiple designers, an ASIC is typically partitioned to permit
multiple designers to code smaller portions of a larger design as shown in Figure 24. As multi-
engineer designs progress, it is not unusual for one of the RTL partitions to be completed and
synthesized before the other RTL partitions are done. It is a good idea to begin testing of the
completed-synthesized block before the rest of the blocks have been synthesized. Putting together
a simulation configuration that tests in-design RTL blocks with the completed gate-level block
allows testing of the gate-level model before the rest of the design is complete. This is mixed RTL
and gate-level simulation.

Figure 24 - ASIC design with multiple RTL partitions

On large projects, the desire to run a mostly RTL-simulation with one gate-level block is not
confined to the situation where one engineer finishes a block before the other blocks are

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

35

synthesized; indeed, mixed simulations are often run to test a gate-level block in isolation from
other gate-level blocks in a design. This helps to narrow the focus of any potential debugging
effort and also, because RTL models generally simulate much faster than equivalent gate-level
models, using fewer gate-level models will generally improve simulation efficiency.

The question is, are there any problems related to mixed RTL and gate-level simulation?

Consider the block diagram of an ASIC partitioned into three design blocks as shown in Figure
24. For pure RTL simulations with an ideal common clock (no delay and no skew in the clock
path), adhering to the coding guidelines outlined in section 3.0 of this paper will yield a race-free
RTL simulation.

Now assume that one of the RTL partitions has been completed, compiled (synthesized) and
saved as a gate-level model as shown in Figure 25. The real flip-flops in the gate-level model have
non-zero setup and hold time requirements and the real logic has actual non-zero propagation
delays. Is there a problem with a 0-delay RTL model driving a gate-level model with real setup
and hold time requirements? Is there a problem with a gate-level model with real propagation
delays driving a 0-delay RTL model?

Figure 25 - Mixed RTL and gate-level design with two RTL and one gate-level partitions

11.1 RTL-to-gates simulation

First examine the setup time requirements of the gate-level model. If the gate-level model has a
non-zero setup time requirement, there is no problem meeting the setup time requirements of the

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

36

model when driven by a 0-delay RTL model. As soon as there is a rising clock edge, the RTL
model immediately changes the outputs that are being driven to the gate-level model so the
outputs are available for a full clock cycle before they must be clocked into the gate-level model.
Conclusion: RTL-to-gates: no setup time problems.

Second, examine the hold time requirements of the gate-level model. If the gate-level model has a
non-zero hold time requirement, there is a problem meeting the hold time requirements of the
model when driven by a 0-delay RTL model. Again, as soon as there is a rising clock edge, the
RTL model immediately changes the outputs that are being driven to the gate-level model, but the
gate-level model expected the old data value to be held to meet the hold time requirements of the
gate-level model. The RTL model changed the gate-level inputs in zero-time, violating the hold
time requirement of the gate-level model.
Conclusion: RTL-to-gates: there are hold time problems.

How can we fix the RTL-to-gates hold time problem? First, recognize that hold times for most
contemporary high-performance ASIC and FPGA families are generally less than 1ns (typical
numbers are 0ns to 0.8ns). By adding #1 delays to the outputs of the RTL model, the RTL model
will hold the pre-clock output values for 1ns, effectively creating a clk-to-q delay that will meet
most ASIC and FPGA hold time requirements.

Will #1 RTL delays fix all RTL-to-gates hold time problems? No. If the gate-level model has hold
times that are greater than 1ns, the #1 RTL delays will be insufficient to meet the required hold
times. One common example of a model that may have hold time requirements that exceed 1ns is
an instantiated RAM model. It is not unusual for RAM models and other instantiated devices to
have input hold times that are greater than 1ns. For these instantiated models, and indeed for any
interface between modules, an engineer needs to document the hold time requirements for all
inputs and specially note any input hold time that is greater than 1ns. RTL models that drive
inputs with longer hold time requirements will need to increase the #1 delays to exceed the hold
time delays of the more critical inputs. Adding a #2 to specific RTL outputs will insure that those
outputs will hold their old values for 2ns after a posedge clk.

Since most device hold times are less than 1ns, an engineer who has heretofore ignorantly added
#1 delays to all nonblocking assignments, has been lucky and has been able to do mixed RTL and
gate-level simulation unaware that potential hold time problems could have caused simulation
failures.

Note that the nonblocking assignment with #1 delay is really the same idea as the delay line
models of section 6.0 with very short transport delays.

11.2 Gates-to-RTL simulation

When investigating gates-to-RTL simulations, first note that the RTL model being driven by a
gate-level model has no setup or hold time requirements.

Are there any setup time problems involved in doing a gates-to-RTL simulation? After an active
clock edge, as long as the propagation of data from the gates model to the RTL model happens

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

37

within one clock period, there is no setup time violation problem. If the propagation time of the
data from the gates model to the RTL model exceeds one clock period, there is a real design
problem (design does not meet timing) that must be fixed, and not a simulation problem.
Conclusion: gates-to-RTL: no simulation-related setup time problems.

Are there any hold time problems involved in doing a gates-to-RTL simulation? After an active
clock edge, even an ultra fast gate-level design has some propagation delay and since the RTL
model has no hold time requirement, there will be no hold time violation problems in the
simulation.
Conclusion: gates-to-RTL: no hold time problems.

11.3 A gate-level clock tree with clock skew

Adding vendor models to a system simulation can add clock skew in two ways: (1) instantiating
clock circuitry, such as a PLL, with inherent clock skew coded into the model between multiple
buffered clock outputs, and (2) by adding gating to the clock paths inside the vendor model. Any
time skew is added to multiple clock signals, there is potential for incorrect simulation behavior.
Note this is a problem that is not related to the implementation of nonblocking assignments and
the Verilog event queue. This problem will exist for any logic simulator.

Adding #1 delays to output-driving nonblocking assignments will solve the clock-skew problem,
as long as the skew is less than 1ns. In Figure 26, a #1 delay has been added to the RTL output
assignments for each module. The #1 delays are required for the mod1.v and mod2.v models.
The #1 delay is not needed in the mod3.v model because it does not drive the inputs of another
RTL model.

Figure 26 - Partitioned ASIC design with instantiated clock tree module with skewed clock buffers

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

38

11.4 Vendor models with clock skew

If a vendor provides a Verilog model, either as a behavioral model with delays or as a gate-level
model with delays, the vendor may have introduced gating or skew into the clock path that could
cause mixed RTL and vendor-model simulations to fail.

Just as was the case with the instantiated clock-tree module with skewed clock buffers of section
11.3, as long as the clock-gating or clock-path delays are shorter than 1ns, the mixed-model
simulation problem can be fixed by making sure that the outputs of the RTL model that drives the
vendor model has been coded using nonblocking assignments with #1 delays. If the clock-gating
or clock path delays exceed 1ns, it follows that the driving RTL model will require nonblocking
assignment delays to match the longest clock-path delay.

Regardless of the implemented simulation solution, frequent nasty complaints and vicious legal
threats should be sent to any vendor that does not provide the ability to enable ideal, non-gated
clock nets inside their models, or in the case of vendors that provide clock-tree circuitry, such as
PLL models, the ability to disable all clock skew between multiply driven clock sources.

11.5 Erroneous vendor models with blocking assignments for sequential logic

One concern that has been raised about vendor models is, what if the vendor made a mistake and
modeled sequential (clocked) logic using blocking assignments or perhaps worse, blocking
assignments with #1 delays. Can I safely use these models if I add #1 delays to my nonblocking
assignments? The answer is no. Nonblocking assignments with #1 delays on our RTL model do
not guarantee that interaction with the problematic vendor model will work.

Consider the scenario of mixed vendor models with a proper RTL design as shown in Figure 27.

Figure 27 - Block diagram of mixed simulation with poorly coded vendor models

Assume that vendor #1 has coded their model with either of the blocking assignment coding styles
of Example 23 or Example 24.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

39

module vendor1_b0 (
 output reg b,
 input a, clk, rst_n);

 always @(posedge clk or negedge rst_n)
 if (!rst_n) b = 0;
 else b = a;
endmodule

Example 23 - Bad vendor #1 model - blocking assignments with no delays

`timescale 1ns / 1ns
module vendor1_b1 (
 output reg b,
 input a, clk, rst_n);

 always @(posedge clk or negedge rst_n)
 if (!rst_n) b = #1 0;
 else b = #1 a;
endmodule

Example 24 - Bad vendor #1 model - blocking assignments with #1 delays

Further assume that our RTL design has been properly coded with one of the nonblocking
assignment coding styles shown in Example 25 or Example 26.

module myrtl_nb0 (
 output reg c,
 input b, clk, rst_n);

 always @(posedge clk or negedge rst_n)
 if (!rst_n) c <= 0;
 else c <= b;
endmodule

Example 25 - Good RTL model - nonblocking assignments with no delays

`timescale 1ns / 1ns
module myrtl_nb1 (
 output reg c,
 input b, clk, rst_n);

 always @(posedge clk or negedge rst_n)
 if (!rst_n) c <= #1 0;
 else c <= #1 b;
endmodule

Example 26 - Good RTL model - nonblocking assignments with #1 delays

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

40

And finally assume that vendor #2 has coded their model with either of the blocking assignment
coding styles of Example 27 or Example 28.

module vendor2_b0 (
 output reg d,
 input c, clk, rst_n);

 always @(posedge clk or negedge rst_n)
 if (!rst_n) d = 0;
 else d = c;
endmodule

Example 27 - Bad vendor #2 model - blocking assignments with no delays

`timescale 1ns / 1ns
module vendor2_b1 (
 output reg d,
 input c, clk, rst_n);

 always @(posedge clk or negedge rst_n)
 if (!rst_n) d = #1 0;
 else d = #1 c;
endmodule

Example 28 - Bad vendor #2 model - blocking assignments with #1 delays

First examine the interaction of a bad vendor model driving the good RTL model. A high-
performance Verilog simulator, like VCS, has the ability to flatten module boundaries, effectively
combining the blocking and nonblocking assignments into common always blocks clocked by the
same clock edge. Depending on how the compiler combines the statements from the two different
module sources (vendor #1 statement followed by RTL statement -or- RTL statement followed
by vendor #1 statement), there may or may not exist a simulation race condition as shown in
Figure 28 and Figure 29.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

41

Figure 28 - Bad vendor #1 models driving good RTL models (with nonblocking assignments and no delays)

Note that the potential race conditions could exist whether or not we have added a #1 delay to
the RTL model.

Next examine the interaction of a good RTL model driving a bad vendor model as shown in
Figure 30 and Figure 31. Again, a high-performance Verilog simulator has the ability to flatten
module boundaries, effectively combining the blocking and nonblocking assignments into common
always blocks clocked by the same clock edge. Irregardless of how the compiler combines the
statements from the two different module sources (RTL statement followed by vendor #2
statement -or vendor #2 statement followed by RTL statement), there will be no race condition
assuming a common clock to both modules or multiple clocks with no skew between the clock
signals.

Note that there is no race condition whether or not we have added a #1 delay to the RTL model.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

42

Figure 29 - Bad vendor #1 models driving good RTL models (with nonblocking assignments and #1 delays)

Figure 30 - Good RTL models (with nonblocking assignments and no delays) driving bad vendor #2 models

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

43

Figure 31 - Good RTL models (with nonblocking assignments and no delays) driving bad vendor #2 models

Compiling the results into Table 9, we see that adding a #1 does not always make a difference
when interacting with bad vendor designs modeled using blocking assignments. Clearly vendor
problems must be reported to and fixed by the vendor and not just ignored hoping that a #1 delay
will fix the problem (because the #1 delay will not always fix the problem!)

Table 9 - Summary of potential race conditions when bad vendor models interact with good RTL models

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

44

11.6 The 20,000 flip-flop benchmark with #1 delays in the I/O flip-flops

All of the preceding mixed RTL and gate-level simulation problems can be traced to signals
becoming skewed while crossing module boundaries. If delays are added to nonblocking
assignments at RTL module boundaries, while leaving all internal nonblocking assignments coded
without #1 delays as shown in Figure 32, what impact does that have on simulation performance?

Figure 32 - Benchmark design with #1 delays only added to the 2,000 I/O flip-flops (iofpipe.v)

The testbenches that were used in section 8.0 were re-run on the same Linux and Solaris machines
that were used in the earlier benchmark simulations. The results compared to no-delay and full #1
delay benchmark simulations are shown in Table 10 and Table 11.

IBM ThinkPad T21, Pentium III-850MHz, 384MB RAM, Redhat Linux 6.2
VCS Version 6.2 - #1 delays only added to the 2,000 I/O flip-flops

DFF pipeline (no inverters)
CPU Time
(seconds)

Speed compared to no-delay
model

No delays 292.920 Baseline no-delay model

Nonblocking #1 delays
(<= #1)

376.460 29% slower

Nonblocking #1 delays only on the 2,000
I/O flip-flops

375.710 28% slower

Table 10 - DFF and IOF pipeline simulations - IBM ThinkPad running Linux

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

45

SUN Ultra 80, UltraSPARC-II 450MHz, 1GB RAM, Solaris 8
VCS Version 6.2 - #1 delays only added to the 2,000 I/O flip-flops

DFF pipeline (no inverters)
CPU Time
(seconds)

Speed compared to no-delay
model

No delays 438.090 Baseline no-delay model

Nonblocking #1 delays
(<= #1)

839.270 92% slower

Nonblocking #1 delays only on the 2,000
I/O flip-flops

833.720 90% slower

Table 11 - DFF and IOF pipeline simulations - SUN Workstation running Solaris

The disappointing results indicate that confining delays to just the I/O flip-flops helped simulations
run only slightly faster than equivalent benchmark circuits with #1 delays added to all flip-flops.

Apparently adding #1 delays to some nonblocking assignments will kill optimizations for all
nonblocking assignments in a design. Vendors should take note of this result and realize that
indiscriminately adding #1 delays to their models will have a huge impact on the simulation
performance of carefully crafted customer RTL code.

12.0 Why run gate-simulations with SDF delays?

Why would anyone even do gate level simulations with delays in this modern design era of Static
Timing Analysis (STA) tools and equivalence checking software?

There are some very practical reasons why engineers may still do timing based simulations with
back-annotated SDF delays and timing checks. Running simulations with back-annotated SDF
delays is sometimes referred to as "dynamic timing analysis," a somewhat fancy name for gate-
level simulations with SDF timings.

12.1 Full system simulation

Doing Static Timing Analysis (STA) on an ASIC is relatively easy to do. Only one logic library is
required so there is a nice, convenient, closed environment where all timing models are available
for timing analysis.

Full system STA is still not a common reality. Timing verification of a mixture of FPGAs, ASICs,
standard ICs, and interconnect on a board design typically requires dynamic timing analysis,
because availability of compatible STA models for the multitude of different devices and board
trace is rarely available.

12.2 Equivalence checking software costs money (surprise!)

Gate simulations can frequently be avoided by doing comprehensive RTL simulations, STA of the
design and equivalence checking between the RTL and gate-level models. Unfortunately, a startup

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

46

or other companies on a tight budget frequently will only have the resources to buy a simulator
and a synthesis tool, such as DesignCompiler. DesignCompiler gives the ability to transform an
RTL design into gates and to perform static timing analysis on the design, but in the absence of an
equivalency-checking tool, gate-level simulations must be run to verify that the gate-level design
matches the pre-synthesis RTL design.

The second-tier funded design team usually acquires a faster and more comprehensive STA tool
in the form of PrimeTime. The third-tier funded company may have the resources to buy an
equivalence checking tool such as Formality. Some of the third-tier companies may choose
Physical Compiler before choosing formal verification tools. By the way, all of these companies
also needed a Verilog simulator (and they're not free either!)

Does that mean that first-tier and second-tier design teams should acknowledge their financial-
backing inadequacies and just give up? Obviously, not.

Good methodologies and good coding practices can often minimize the problems that would be
identified by more advanced tools. Companies with limited resources will need to plan carefully
and judiciously partition a design to increase the probability of success so that when the final gate-
simulations with SDF timing are performed, the probability of passing all of the simulation
validation suites will be high; thereby reducing the likelihood that multiple, slow gate-level-
simulations with SDF delays will be required.

As a side-note, the upper-tier design teams still may choose tools to accelerate the rapid
deployment of verification environments like VERA or e-Specman before choosing to purchase
equivalence checking tools. So many tools ... so little money!

12.3 Final regression with SDF delays to verify STA and equivalence checked models

An interesting fact is that it still may be useful to run that final gate-simulation with SDF timing to
verify that the STA-checked and equivalence-checked design is correct.

A few years ago, one SNUG attendee (identity unknown) reported that out of ten ASIC designs
he had worked on, SDF-delay gate-simulations revealed problems not reported by STA tools on
nine of the ten designs.

I am not personally aware of the types of problems that are revealed by gate-level simulations that
are not caught by STA and equivalence checking tools. If anyone knows of actual problems
caught by gate-simulations that were missed by STA and equivalence checking tools, please email
your experiences to cliffc@sunburst-design.com. I hope to track and publish common
problems that were found by gate-level simulations, not detected by other tools. Over time, this
tracking list may be used to improve other tools.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

47

13.0 Testbench techniques for cycle-based friendly simulation

There are a few simple tricks that can help engineers test their cycle-based RTL designs and avoid
common Verilog race conditions. Some of these tricks are detailed in this section.

13.1 Reset at time 0

Asserting reset at time 0 using a blocking assignment can cause a simulation race condition. Why?
Because all procedural blocks become active at time 0. If the initial block in Example 29
becomes active before the always block, the always block will not recognize reset until the
next detected posedge clk or the next assertion of reset.

initial begin
 rst_n = 0;
 ...
end

always @(posedge clk or negedge rst_n)
 ...

Example 29 - Potential race condition while asserting reset at time 0

In reality, even though it is not defined by the IEEE Verilog Standard, most vendors have
implemented Verilog simulators to activate all always blocks before activating initial blocks,
which means that the always blocks are ready for the reset signal before the reset signal is
defined in an initial block.

A designer should not count on initial blocks being started after all always blocks. A simple
way to avoid the race condition is to insure that the first reset signal if asserted at time 0 is
assigned using a nonblocking assignment as shown in Example 30. The reset nonblocking
assignment will force the reset signal to be executed at the end of time step 0, after all of the
always blocks have become active. This will force the always blocks to trigger again when the
reset is updated, still at time 0.

initial begin
 rst_n <= 0;
 ...
end

always @(posedge clk or negedge rst_n)
 ...

Example 30 - No race condition while asserting reset at time 0

13.2 Reset on the first clock edge

Another way to avoid the race condition is to assert reset within 1-2 clock cycles after the
simulation starts. One typically ignores unknowns within the first couple of clock cycles, the same
as if real hardware were powering up.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

48

13.3 Clock-low at time 0

A common Verilog clock oscillator implementation is shown in Example 31. I typically start a
simulation at time 0 with the clock signal at the logic-level 0. This is how I code most clock
oscillators in my testbenches.

`define cycle 10
...
initial begin
 clk = 0;
 forever #(`cycle/2) clk = ~clk);
end

Example 31 - Simple clock oscillator with clock-low at time 0

For those rare designs that must implement and trigger off of a rising clock edge at time 0, the
clock oscillator functionality can be implemented as shown in Example 32.

`define cycle 10
...
initial begin
 clk <= 1;
 forever #(`cycle/2) clk = ~clk);
end

Example 32 - Non-race clock oscillator with clock-high at time zero

This implementation of the clock oscillator avoids race conditions at time 0 by forcing the clock
signal to go high at the end of time 0, after all sequential processes have become active. After the
first rising clock edge at time 0, all subsequent clock transitions are executed with the more
simulation-efficient blocking assignment inside the forever-statement.

13.4 Change stimulus on clock edges

A superior testbench creation strategy is to make input assignments on the inactive clock edge
whenever possible as opposed to using fixed #delays in the stimulus code. The problem with fixed
delays is if the engineer decides to test the design at a different frequency, many if not all of the
fixed delays will have to be modified. A testbench created with stimulus changing on clock edges
rarely has to be modified when the clock cycle of the design is changed.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

49

14.0 Problems with the Bergeron race-avoidance guidelines

Janick Bergeron has written a fine book on writing testbenches, but I find myself in strong
disagreement with some of the guidelines he shares in his book. Bergeron gives the following four
"Guidelines for Avoiding Race Conditions:[10]"

1. If a register is declared outside of the always or initial block, assign to it using a nonblocking
assignment. Reserve the blocking assignment for registers local to the block.

2. Assign to a register from a single always or initial block.
3. Use continuous assignments to drive inout pins only. Do not use them to model internal

conbinational functions. Prefer sequential code instead.
4. Do not assign any value at time 0.

Of these guidelines, I disagree with guidelines 1, 3 and 4, and I believe guideline 2 is understated.

With reference to Bergeron guideline #1: As detailed in section 10.0, I see no compelling reason
to mix blocking and nonblocking assignments in the same always block. I do not believe this
guideline makes simulations significantly faster, the coding style more understandable (in fact I
believe this coding style requires a more in-depth understanding of the Verilog event queue to
understand why this works) and adherence to this guideline does not make the functionality easier
to code. Note the internally declared variable is visible to simulation waveforms at a lower level of
hierarchy, which reduces design observability. Even if the declaration is moved outside of the
always block, the waveform display will show both input and resultant output signals changing on
the same waveform clock edge (very confusing).

With reference to Bergeron guideline #2: I largely agree with this guideline but I would extend it
to say:
Cummings Guideline #6: Do not make assignments to the same variable from more than one
always block (or from the perspective of a testbench, from more than one initial block).

With reference to Bergeron guideline #3: Most simple combinational logic is more easily and
much more concisely coded using continuous assignments. I typically code a combinational
always block when I want to use for-loops, case statements or explicit if-else statements. I
sometimes code a large combinational always block to show the grouping of a set of closely-
coupled equations. I do not believe the Bergeron guideline makes simulations significantly faster,
the coding style more understandable or the functionality easier to code (in fact, a combinational
always block frequently has additional declaration overhead and a more verbose
implementation).

With reference to Bergeron guideline #4: The apparent intent is to avoid race conditions that can
occur at time 0. As shown in section 13.0 this can be easily avoided by making the first reset
assignment using a nonblocking assignment and/or making the first clock assignment using a
nonblocking assignment. I see no reason to leave simulation signals undefined at time 0.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

50

15.0 Conclusions and Recommendations

Bergeron makes the observation that he had "yet to see a single testbench that simulates with
identical results on Verilog-XL and VCS[9]." I believe Bergeron is following the wrong
guidelines.

When following the guidelines presented in this paper, except when there have been simulator
bugs, I have yet to see a testbench simulate differently between any two major Verilog simulators.

Adding a #1 delay to the RHS of nonblocking assignments can provide some utility, but it also
has a significant performance cost during the highest performance Verilog simulations. Although
the +nbaopt compiler switch described in section 8.2 can improve the performance of
nonblocking assignments with #1 delays, the switch still does not cause #1-delay coded models to
achieve quite the same simulation performance as no-delay models.

If an engineer insists on using #1 delays with nonblocking assignments, it would be best to add
the delay as a `D macro definition as described in section 8.1 to still permit simulations without
delays that can run up to 100% faster than simulations with #1 delays.

Based on the above observations, I still prefer the simplicity of coding nonblocking assignments
with no delays. If delays are later required for mixed RTL and gates simulations, I can add the
required nonblocking assignment delays to the outputs of my models (the only place where it is
really required for correct simulation) or I can quickly open my design files and globally substitute
/<=/<= `D/ and add the conditional `D macro definition (basically I am lazy and can fix mixed
simulation race problems very easily if necessary). Yes I know that the global substitution will
also introduce syntax errors in the few places where I have used the less-than-or-equal-to
operator (<=) but those are easily detected and corrected syntax errors when the design is
recompiled.

The alternate and equally valid strategy is to add conditional `D macro definitions right from the
start of a project to all RTL models. This strategy will help avoid 90%+ of the potential mixed
simulation problems that might occur in the future. It is also an easy coding guideline to impose
on the less-Verilog-educated masses. Keep in mind that a #1 delay is not always enough to fix all
mixed simulation problems.

Using either of the above techniques, it would still be wise to execute a "grep "<= #1" *.v"
command to find inefficient assignments that will seriously impact simulator performance. If you
are using an operating system that does not support the grep command, you probably having
bigger problems to worry about than simple #1 delay usage!

Vendors must consider the many ways that their IP may be used in simulations with ideal RTL
Verilog code. Vendor IP should be modeled either with ideal clock signals (no logic or skew
delays in the clock paths) or permit the selection of an ideal clock signal to facilitate mixed RTL
and gate-level simulations. I recommend that an ideal clock network be selectable by either

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

51

making the macro definition, `define IDEAL_CLOCK or by turning on the command line macro
definition +define+IDEAL_CLOCK which is equivalent to the RTL macro definition.

Engineers must understand why delays might be added to nonblocking assignments to
comprehend that a #1 delay may not always be sufficient to fix mixed RTL and gate-level
simulations. If the clock skew is greater than 1ns or if a gate-level model has an input hold-time
requirement of greater than 1ns, the ignorantly applied #1 delays will not fix the simulation
problem and much unnecessary cussing will ensue! ☺

15.1 Recommended VCS enhancement: +nba1 command switch

Engineers could avoid coding most nonblocking assignment #1 delays if VCS and other leading
simulator-vendors would implement a +nba1 command line switch to automatically add #1
delays to all no-delay nonblocking assignments in sequential always blocks.

The +nba1 switch could assist engineers to easily detect simulation problems related to deficient
vendor models, skewed clock delays or mixed RTL and gate-level simulations. This switch would
prove a valuable debugging tool in large, mixed, system simulation environments.

16.0 Acknowledgements

My thanks to Leah Clark of Cypress Semiconductor and Steve Golson of Trilobyte Systems for
reviewing and providing valuable feedback about this paper. And my thanks to Mark Warren,
Technical Director of the Verification Technology Group at Synopsys for answering questions
and offering suggestions related to cycle-based simulation and simulation acceleration using VCS.

17.0 References

[1] Adam Krolnik, personal communication.

[2] Clifford E. Cummings, "Nonblocking Assignments in Verilog Synthesis, Coding Styles That
Kill!," SNUG (Synopsys Users Group) 2000 User Papers, section-MC1 (1st paper), March
2000. Also available at www.sunburst-design.com/papers

[3] Clifford Cummings, "Correct Methods For Adding Delays To Verilog Behavioral Models,"
International HDL Conference 1999 Proceedings, pp. 23-29, April 1999. Also available at
www.sunburst-design.com/papers

[4] IEEE Standard Hardware Description Language Based on the Verilog Hardware
Description Language, IEEE Computer Society, IEEE, New York, NY, IEEE Std 1364-
1995

[5] IEEE Standard Verilog Hardware Description Language, IEEE Computer Society, IEEE,
New York, NY, IEEE Std 1364-2001.

[6] IEEE P1364.1/D2.1 Draft Standard for Verilog Register Transfer Level Synthesis,
http://www.eda.org/vlog-synth/drafts.html

[7] Janick Bergeron, Writing Testbenches, Functional Verification of HDL Models, Kluwer
Academic Publishers, 2000.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

52

[8] Janick Bergeron, Writing Testbenches, Functional Verification of HDL Models, Kluwer
Academic Publishers, 2000, pg. xxi. (Verilog learning curve)

[9] Janick Bergeron, Writing Testbenches, Functional Verification of HDL Models, Kluwer
Academic Publishers, 2000, pg. 140. (Verilog portability exaggeration)

[10] Janick Bergeron, Writing Testbenches, Functional Verification of HDL Models, Kluwer
Academic Publishers, 2000, pg. 147. (flawed race avoidance guidelines)

[11] Lionel Bening, and Harry Foster, Principles of Verifiable RTL Design, Second Edition,
Kluwer Academic Publishers, 2001

[12] Mark Warren, Technical Director, Verification Technology Group, Synopsys. Personal
communication.

[13] Paul Campbell, "A note on Verilog® assignments," VeriFarm Inc web site. Downloaded
from www.verifarm.com/assign.shtml

[14] Steve Golson, personal communication.

[15] Steven Leung, "Subject: Re: How does one do a delay-line model in Verilog," posting on
comp.lang.verilog, 1993-02-12 (found on web site groups.google.com)

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and trainer
with 20 years of ASIC, FPGA and system design experience and 10 years of Verilog, synthesis
and methodology training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (VSG) since 1994, chaired
the VSG Behavioral Task Force, which was charged with proposing behavioral and synthesis
enhancements to the Verilog language. Mr. Cummings is also a member of the IEEE Verilog
Synthesis Interoperability Working Group and the Accellera SystemVerilog Working Group.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Email address: cliffc@sunburst-design.com
An updated version of this paper can be downloaded from the web site:

www.sunburst-design.com/papers
(Data accurate as of October 30th, 2002)

Revision 1.1 (September 2002) - What Changed?

Figure 4 at the end of section 2.1 was replaced with Figure 4 and Figure 5 to show different re-
triggered event scheduling caused by blocking assignments or continuous assignments (Figure 4)
and re-triggered event scheduling caused by nonblocking assignments (Figure 5). The two figures
show different ways that events can be re-triggered in the same simulation time step.

SNUG Boston 2002 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

53

Revision 1.2 (October 2002) - What Changed?

The delay model of Example 5 was corrected to show both y1 and y2 outputs. The PDF was also
corrected to fix formatting problems that existed on page 5.

Revision 1.3 (December 2002) - What Changed?

Figure 28, Figure 29, Figure 30, Figure 31 and Table 9 were all corrected for the case where a
blocking assignment with RHS delay precedes a second assignment. In every case, the behavior is
equivalent to making the assignments using fork-join. A RHS #1 delay on a blocking
assignment between begin-end delays execution of the second assignment until #1 after the first
assignment has been executed. The correct behavior is to allow the second assignment to start
execution concurrently with the first assignment; hence, the need for the fork-join to replace
the begin-end in these examples. This also means there are fewer race conditions than reported
in earlier version of this paper, so the table also had to be updated.

Added reference [3] to the references section.

There is actually another good reason to NOT use delays after blocking assignments as shown in
Example 24. If rst_n is asserted 0.5 ns after the posedge clk and if the posedge clk is
going to drive a 1 to the b output, the reset will not be detected until the next posedge clk.

My 1999 HDLCON paper[3] went into detail about adding delays to behavioral models. One
important guideline from that paper was to never put delays on the RHS of blocking assignments
because events can be missed. If you use sequential reset, you can probably get away with adding
the RHS delay, but this is a bad habit to develop and some day you are going to use it wrong and
the debug effort will be painful. It is better not to use this coding style.

