Verilog Nonblocking Assignments With Delays,
Myths & Mysteries

SNUG-2002
Boston, MA
Voted Best Paper
2" Place

Clifford E. Cummings

Sunburst Design, Inc.

cliffc@sunburst-design.com

ABSTRACT

There is a common misconception that coding sequential logic with nonblocking assignments does
not simulate correctly unlessa#1 delay is added to the right hand side of the nonblocking
assignment operator. Thisis not true. This paper will explain how delays and nonblocking
assignments impact the Verilog event queue. This paper will aso detail both good and bad
reasons for adding delays to nonblocking assignments and include guidelines for good RTL

coding styles that permit mixed RTL and gate-level smulation.

1.0 Introduction

In his book Writing Testbenches[7], Functional Verification of HDL Models, Janick Bergeron
clamsthat VHDL and Verilog both have the same area under the learning curve[8]. Due to the
misinformation that has been spread through numerous V erilog books and training courses, | am
afraid Bergeron may be right.

When Verilog is taught correctly, | believe the area under the Verilog learning curve is much
smaller and Verilog smulations run much faster than comparable VHDL simulations.

This paper details functionality and important guidelines related to nonblocking assignments and
nonblocking assignments with delays. Before discussing nonblocking assignment functionality and
recommendations, a quick review of the definition of nonblocking assignmentsisin order:

A nonblocking assignment is a Verilog procedura assignment that uses the "<=" operator inside
of aprocedural block. It isillegal to use a nonblocking assignment in a continuous assignment
statement or in anet declaration.

A nonblocking assignment can be viewed as a 2-step assignment. At the beginning of a ssmulation
time step, the right-hand-side (RHS) of the nonblocking assignment is (1) evaluated and at the
end of the nonblocking assignment the left-hand-side (LHS) variableis (2) updated. A
nonblocking assignment does not "block™ other assignments from being executed between the
evaluation and update steps of a nonblocking assignment; hence, the name "nonblocking.”

Despite complaints from commercial document spell-checking software, nonblocking is spelled
without a hyphen, as noted in both |EEE Verilog Standardg[4][5] and the pending |EEE Verilog
Synthesis Standard[6].

SNUG Boston 2002 2 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

2.0 TheVerilog event queue

The Verilog event queue described in this paper is an algorithmic description. The exact
implementation is not defined in the Verilog Standard but the outcome must duplicate the
functionality of the description.

Section 5.4 of both IEEE Verilog Standards documents, |EEE Std 1364-1995[4] and |EEE Std
1364-2001[5], describes "The Verilog simulation reference model.” The reference model is shown
below:

In all the examplesthat follow, T refersto the current simulation time, and all events are held
in the event queue, ordered by simulation time.

while (there are events) {
if (no active events) {
if (there are inactive events) {
activate all inactive events;
} else if (there are nonbl ocking assign update events) {
activate all nonbl ocking assign update events;
} else if (there are nonitor events) {
activate all nonitor events;

} else {
advance T to the next event tine;
activate all inactive events for tine T;
}

}

E = any active event;
if (Eis an update event) {

update the nodified object;

add eval uati on events for sensitive processes to event queue;
} else { /* shall be an evaluation event */

eval uate the process;

add update events to the event queue;

Figure 1 - The Verilog simulation reference model

A smplified and restructured version of this algorithm can be examined if #0 delays (inactive
events) are not used. The model can be further smplified if $noni t or and $st r obe commands
are removed from the algorithm. Note that $noni t or and $st r obe commands do not trigger
evaluation events and they are always executed last in the current time step. The algorithm has
been reworded in an attempt to add clarification to the algorithm execution process.

SNUG Boston 2002 3 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

Think of T as an integer that tracks the smulation time. At the beginning of asimulation, T is set
to 0, al netsare set to HiZ (z) and al variables are set to unknown (x). All procedural blocks
(initial andal ways blocks) then become active. In Verilog-2001, variables may be initialized
in their respective declarations and thisinitialization is permitted either before or after the
procedural blocks become active at time 0.

while (there are events) {

if (there are active events) {
E = any active event;
if (Eis an update event) {
update the nodified object;
add eval uati on events for sensitive processes to event queue;

else { // this is an evaluation event, so ..
eval uate the process;
add update events to the event queue;

}
}

else if (there are nonbl ocki ng update events) {
activate all nonbl ocking update events;

}
el se {
advance T to the next event tine;
activate all inactive events for tine T;
}

Figure 2 - Modified Verilog simulation reference model

Activating the nonblocking events means to take all of the events from the nonblocking update
events queue and put them in the active events queue. When these activated events are executed,
they may cause additional processes to trigger and cause more active events and more
nonblocking update events to be scheduled in the same time step. Activity in the current time step
continues to iterate until al eventsin the current time step have been executed and no more
processes, that could cause more events to be scheduled, can be triggered. At this point, al of the
$noni t or and $st r obe commands would display their respective values and then the
simulation time T can be advanced.

SNUG Boston 2002 4 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

2.1 Event scheduling and re-triggering

As defined in section 5.3 of the IEEE 1364-1995 Verilog Standard, the "stratified event queue” is
logically partitioned into four distinct queues for the current smulation time and additional queues
for future smulation times.

Blocking assignments

a Evaluate RHS of nonblocking These events may
assignments be scheduled in
Active Events - Continuous assignments any order

$display command execution

Evaluate inputs and change
outputs of primitives

Inactive Events #0 blocking assignments +—— Guideline #8: do not
— use #0 delays
Nonblocking EvenE Update LHS of honblocking assighments
Monitor Events - Smonitor command execution
“ $strobe command execution

: Other specific PLI commands

Figure 3 - The Verilog "stratified event queue”

The active events queue is where most Verilog events are scheduled, including blocking
assignments, continuous assignments, $di spl ay commands, evauation of instance and primitive
inputs followed by updates of primitive and instance outputs, and the evaluation of nonblocking
RHS expressions. The LHS variables of nonblocking assignments are not updated in the active
events queue but instead are placed in the nonblocking assign update events queue, where they
remain until they are activated (moved into the active events queue).

As shown in Figure 4, active events such as blocking assignments and contiuous assignments can
trigger additional assignments and procedural blocks causing more active events and nonblocking
assign update events to be scheduled in the same time step. Under these circumstances, the new
active events would be executed before activating any of the nonblocking assign update events.
As shown in Figure 5, after the nonblocking assign updates events are activated, the LHS of the
nonblocking assignments are updated, which can trigger additional assignments and procedural
blocks, causing more active events and nonblocking assign update events to be scheduled in the
same time step. As described in the modified ssimulation reference model of Figure 2, smulation
time does not advance while there are still active events and nonblocking assign update events to
be processed in the current ssmulation time.

SNUG Boston 2002 5 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

This blocking assignment or this
continuous assignment can trigger
additional events in the same time step

Active (1) Blocking assignment These events may
Events (1-3) (2) Evaluate RHS of NBA be scheduled in

(3) Continuous assignment any order

Acti (4) Blocking assignment These
ctive events may
Events (4-6) I (5) Evall:late RHS mf NBA be
(6) Continuous assignment scheduled in
NBA updates (2) & (5) will both [any,order

happen after assignment (6)

Nonblocking

Events (2) Update LHS of (2) nonblocking assignment

Nonblocking Update LHS of (5) nonblocking assignment

Events (5)

Monitor Smonitor command execution
Events $strobe command execution

Figure 4 - Verilog event queue - active events can trigger additional eventsin the same simulation time step

Active - (1) Blocking assignment These events may
Events (1-3) - (2) Evaluate RHS of NBA be scheduled in

- (3) Continuous assignment any order

Nonblocking
Events (2) E Update LHS of (2) nonblocking assignment
scheduled in

This nonblocking assignment can trigger
additional events in the same time step
Active
Events (4-6)
any order
NE::’:::T";;Q IE Update LHS of (5) honblocking assignments
Monitor - $monitor command execution
Events - $strobe command execution

Figure 5 - Verilog event queue - nonblocking events can trigger additional events in the same simulation time step

These events
may be

&

(4) Blocking assignment
(5) Evaluate RHS of NBA
(6) Continuous assignment

A A

SNUG Boston 2002 6 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

3.0 Review of Important Coding Guidelines with Nonblocking Assignments

In my SNUG2000 San Jose conference paper[2], | mentioned eight important guidelines to follow
when modeling synthesizable logic. For review purposes, the guidelines are included here:

Guideline #1: When modeling sequentia logic, use nonblocking assignments.

Guideline #2: When modeling latches, use nonblocking assignments.

Guideline #3: When modeling combinational logic with an always block, use blocking
assignments.

Guideline #4: When modeling both sequential and combinational logic within the same always
block, use nonblocking assignments.

Guideline #5: Do not mix blocking and nonblocking assignments in the same aways block.

Guideline #6: Do not make assignments to the same variable from more than one always block.

Guideline #7: Use $st r obe to display values that have been assigned using nonblocking
assignments.

Guideline #8: Do not make assignments using #0 delays.

Guidelines #1-#4 are now generally recognized to be good and safe coding styles for RTL coding.
Guideline #5 has been debated and will be further addressed and justified in section 10.0.
Violating guideline #6 will typically yield bizarre mismatches between pre-synthesis and post-
synthesis smulations and frequently neither the pre-synthesis nor post-synthesis s mulations will
be functionally accurate. Guideline #7 explains how to display the value of an assignment made
with a nonblocking assignment in the same time step as the nonblocking assignment. Guideline #8
basically warns that a#0 assignment causes events to be scheduled in an unnecessary intermediate
event queue with often confusing results. In general a#0 assignment is not necessary and should
never be used.

Exceptions to these guidelines can be safely implemented, but | would ask myself the following
three questions when considering exceptions to the recommended coding styles:

1. Doesthe exception coding style significantly improve simulation performance more than an
equivaent coding style that follows the above guidelines? Does it make the simulation
significantly faster?

2. Doesthe exception make RTL or verification coding significantly easier to understand than an
equivalent coding style that follows the above guidelines? Does it make the code more
under standable?

3. Does the exception significantly facilitate RTL or verification coding more than an equivalent
coding style that follows the above guidelines? Does it make the coding effort much easier?

Much faster? More understandable? Easier to code? If not, then the exception is generally not
worth making.

SNUG Boston 2002 7 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

Section 10.0 will address these questions with respect to Guideline #5, the guideline from this list
that is most frequently challenged in public forums.

4.0 For 0-delay RTL modeling, nonblocking assignments finish fir st!

When testing a 0-delay RTL model, stimulus inputs typically are applied on an inactive clock edge
and RTL sequentia logic activity happens on the active clock edge. For the example in this
section, the posedge cl k will be considered the active clock edge.

Consider the logic shown in Figure 6. The O-delay RTL code for this moddl is shown in Example
1, and a simple stimulus testbench for this model is shown in Example 2.

d1
b
d2 2
q1 d
Q
clk J7 |7
rst_n i

Figure 6 - Simple sequential logic with one clock

nmodul e sbl k1 (
out put reg g2,

i nput a, b, clk, rst_n);
reg gl, di, dz;
always @a or b or gql) begin
dl = a & b;
d2 = dl | qi;
end

al ways @ posedge cl k or negedge rst_n)
if (!'rst_n) begin
g2 <= 0;
gql <= 0;
end
el se begin
g2 <= dz;
gl <= di;
end
endnodul e

Example 1 - O-delay RTL model for ssmple sequential logic with one clock

SNUG Boston 2002 8 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

modul e tb;
reg a, b, clk, rst_n;

initial begin // clock oscillator

clk = O;
forever #10 clk = ~cl k;
end

sbl k1 ul (.q92(q2), .a(a), .b(b), .clk(clk), .rst_n(rst_n));

initial begin // stimnulus
a==0; b =0;
rst_ n <= 0;
@ posedge cl k);
@ negedge clk) rst_n = 1;
a=1 b =1;
@ negedge clk) a =
@ negedge clk) b =
@ negedge cl k) $fi

end

endnodul e

0;
0;
ni sh;

Example 2 - Simple testbench to apply stimulus to the O-delay RTL model for simple sequential logic

The testbench has a free-running clock oscillator with the cl k initialized to 0 for the first half-
cycleandthei ni ti al block setsinitial valuesfor both the a and b inputs and then resets the
circuit until one cycle into the smulation (the first official negedge cl k). On thefirst official
negedge cl k, the reset is removed and the primary inputs to the model, a and b, are both
changed to 1's. On the next two negedge cl ks, first the a-input and then the b-input are
successively changed to 0's. One negedge cl k later the smulation is stopped with a$f i ni sh
command.

From this smple sequence of stimulus inputs, we can see interesting aspects of how stimulus and
RTL events are scheduled in the Verilog event queue.

First note that the primary inputs (a and b) and any RTL combinational logic connected to the
primary inputs (d1 and d2) change on the negedge cl k asshown in Figure 7. Thistypically
means that only active events are scheduled and executed on the inactive clock edge, as shown in
Figure 8.

SNUG Boston 2002 9 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

rst n I
clk I I I I I l I I

b J I
d1
Tt 1
d2 B |
q2 [L

Figure 7 - Combinational module inputs are changed on the negedge clk

- & Blocking assignment (clk = ~ clk; // testbench negedge clk)
2:;:1 & Triggers testbench stimulus commands @negedge clk
& Triggers combinational inputs on the device under test
Nonblocking I . .
Events Empty (no nonblocking assignments to update)
Monitor - $monitor command execution (if any) Combinational
Events - $strobe command execution (if any) blocking
assignments

Advance to next event
(should be a posedge clk blocking assignment)

Figure 8 - Verilog event queue - combinational inputs @negedge clk

In the Verilog event queue, nonblocking assignments are updated after the active events (blocking
assignments) are executed, but within an RTL 0-delay, cycle-based model, in each time step
where an active clock edge occurs, all nonblocking assignments will actually be updated before
executing the combinational blocking assignments in the same simulation time step. Why?

SNUG Boston 2002 10 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

Nonblocking
Events

\

Active
Events

Nonblocking
Events

Update LHS of sequential logic nonblocking assignments

Acti « Blocking assignment (clk = ~ clk; // testbench posedge clk)
ctive
-
Events Triggers evaluation of RHS of sequential logic NBAs
E

Empty (no additional nonblocking assignments to update)

- Activate and execute NBAs events
- Triggers combinational logic blocking assignments
(after the NBAs in the same time step)

Monitor < $moniter command execution (if any)
Events - $strobe command execution (if any)

negedge clk - triggers stimulus input events
P gedg g9 P

Advance to next event

—

rst n I

clk

posedge clk - triggers sequential logic events

Figure 9 - Verilog event queue - sequential logic+ @posedge clk

dl

gl

d2

g2

H
1

T i
|

/

7 |

Figure 10 - Sequential logic nonblocking assignment outputs change first on posedge clk

As shown in the Verilog event queue of Figure 9 and the waveform display of Figure 10, a clock
edge triggers the sequential always block(s). The outputs of the sequentia always block(s) will
schedule updates at the end of the current time step. All the nonblocking update events are
activated and updated, which will then trigger the combinationa logic, also in the same time step
as shown in Figure 11. The combinational logic will settle out and remain unchanged until the

SNUG Boston 2002
Rev 1.3

11 Verilog Nonblocking Assignments
With Delays, Myths & Mysteries

next posedge cl k. On the next posedge cl k, the sequential logic will again be updated with
the stable combinational values and again trigger the combinational logic.

rst_n L I I 1
clk — I LI LI 1
= T
b L
]
ql [})
dz | 1*
q2 [L

Figure 11 - Combinational logic blocking assignment outputs change second after nonbl ocking assignments
complete

5.0 Inertial & transport delays

Inertial delay models are smulation delay models that filter pulses that are shorter than the
propagation delay of Verilog gate primitives or continuous assignments. Inertial delays swallow
glitches!

Inertial delays are very easy for a simulator to implement because the simulator only keeps track
of what the next assignment value is going to be and when it will occur. If another assignment is
made to the same variable before the currently scheduled event is executed, the simulator replaces
the earlier but unrealized scheduled event with the new event value and the new time when the
event will occur. By default, both Verilog and VHDL simulate using inertial delays.

Transport delay models are smulation delay models that pass all pulses, including pulses that are
shorter than the propagation delay of corresponding Verilog procedural assignments. Transport
delays pass glitches, delayed in time.

The VHDL language models transport delays by adding the key word "transport" to assignments.

Verilog can moddl RTL transport delays by adding explicit delays to the right-hand-side (RHS) of
a nonblocking assignment.

SNUG Boston 2002 12 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

5.1 Verilog Transport Delaysin gate-level smulations

By default, Verilog gate-level models are pure inertial-delay models but there are generally
available Verilog command-line switches that can be used to alter this behavior for gate-level
simulations.

Many ASIC gate-level models are written with delays inside of specify blocks that permit
simulation pulses to be passed using transport delay models when certain command line switches
areinvoked. Typicaly, Verilog simulators use the command line switches “regject” +pul se_r/ %
and “error” +pul se_e/ % where the percent value (%) is equal to 0-100 in increments of 10.

The +pul se_r/ R% switch forces pulses that are shorter than R% of the propagation delay of the
device being tested to be "regjected” or ignored. The +pul se_e/ E% switch forces pulses that are
shorter than E% but longer than %R of the propagation delay of the device being tested to be an
"error" causing unknowns (X's) to be driven onto the output of the device. Any pulse greater than
E% of the propagation delay of the device being tested will propagate to the output of the device
as adelayed version of the expected output value.

Consider asimple delay buffer model with a propagation delay of 5ns, where the delay has been
added to a Verilog specify block. The Verilog code for this gate-level model is shown in Example
3 and a simple testbench stimulus block to test the model is shown in Example 4.

“timescal e 1ns/1ns
nmodul e del aybuf (output y, input a);
buf ul (y, a);

specify
(a*>y) = 5;
endspecify
endnodul e

Example 3 - Delay buffer (delaybuf) with specify-block path delay of 5ns

“tinmescal e 1ns/1ns
modul e tb;

reg a;

i nteger i;

del aybuf i1 (.y(y), .a(a));

initial begin

a=0;
#10 a=-~a;
for (i=1;i<7;i=i+1) #(i) a=-~a;
#20 $fini sh
end
endnodul e
Example 4 - Simple stimulus testbench for the delay buffer (delaybuf) model
SNUG Boston 2002 13 Verilog Nonblocking Assignments

Rev 1.3 With Delays, Myths & Mysteries

For thisdel aybuf modd, the default will be a pure inertial delay-mode smulation and all input
pulses less than 5ns in width will be filtered or ignored.

Thisdel aybuf model can be smulated with pure transport delays by turning on switches that
neither cause any input signal to be rejected nor cause any input signal to be treated as an error
using the command line switches shown below:

vcs -Rl +v2k th.v delaybuf.v | +pulse_r/0 +pulse_e/0 |

Pure transport delays
All pulses shorter than 5ns should be passed
(but they were not)

| =t 0 (1 ns)
| =l HA

Delta HA

11 |[a st | !
1 |y stx| |
[[i |

||

Figure 12 - Pure transport delays. delaybuf waveform display using +pulse_r/0 +pulse_e/0 switches

Unfortunately, to get true transport delay simulation results, simulators aso often require the
+transport _pat h_del ays switch to be used, to achieve the smulation results shown in

Figure 13.

vcs -Rl +v2k tb.v delaybuf.v +pulse_r/0 +pul se_e/0 +transport_path_del ays

Pure transport delays
All pulses shorter than 5ns are passed
(added switch +transport path delays)

| =t 0 (1 ns)

I 2 HA

Delta HA

1 |[a sta|
BY Stx E
[o et

Figure 13 - Corrected transport delays: delaybuf waveform display using +pulse r/0 +pulse_e/0
+transport_path_delays switches

SNUG Boston 2002 14 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

Thissame del aybuf model can be smulated with pure "error" delays by turning on switches
that cause no input signal to be rejected but that do cause al input signals shorter than the

propagation delay of the device to be treated as an error using the command line switches shown
below:

vecs -Rl +v2k tb.v delaybuf.v | +pulse_r/0 +pul se_e/ 100 |

Pure "error” delays
All pulses shorter than 5ns are displayed as X's

| =1 0 {1 ns)
| (= NA

Delta A ||

IH—1=]

Figure 14 - Pure "error" delays: delaybuf waveform display using +pulse_r/0 +pulse_e/100 switches

These switches command the ssmulator to not reject any pulses (+pul se_r/ 0), but pass
unknowns for any pulse that is less than 100% of the propagation delay of the gate
(+pul se_e/ 100). This causes all short pulses to be passed to the device outputs as unknowns.

Thissame del aybuf mode can be ssimulated with pure inertial delays by turning on switches that

cause al input signals shorter than the propagation delay of the device to be ignored using the
command line switches:

vecs -Rl +v2k tbh.v delaybuf.v | +pul se_r/100 +pul se_e/ 100 |

Pure inertia delays
All pulses shorter than 5ns are filtered out

| = 0 {1 ns)
| =i NA c1

Delta HA|[O

=

Figure 15 - Pureinertial delays: delaybuf waveform display using +pulse_r/0 +pulse_e/0 switches

SNUG Boston 2002 15 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

The first switch commands the simulator to reject any input pulse shorter than 100% of the
propagation delay of the device (+pul se_r/ 100). Since the percentage of the "error” switch
matches the percentage of the "regject” switch, this forces the smulator to not pass unknowns to
the outputs of the device. Thisisapure inertial delay model style.

Redl hardware is neither pure-inertial nor pure-transport in behavior. Real hardware will generaly
reject very short inputs, pass longer inputs, and intermediate inputs will pass through some
devices and not others depending on the process tolerances used to fabricate the chip when it was
made (process variations).

Thissame del aybuf mode can be simulated with this same redistic mixture of inertia,
uncertain and transport delays by turning on switches that cause short input signals to be regjected,
long input signals to be passed, and intermediate input signals to propagate as unknowns. The
command line switches to reject pulses shorter than 40% of the specified delay, pass error pulses
for all pulses greater than 40% but less than 80% of the specified delay, and pass all pulses that
are greater than 80% of the specified delay, are shown below:

vcs -Rl +v2k th.v delaybuf.v | +pul se_r/40 +pul se_e/ 80 |

Mixed delays (r/40 & «/80)
Pulses shorter than 40% of 5ns are filtered out
Pulses between 40% & 80% of bns are passed as X's
Pulses greater than 80% of 5ns are passed

| =i 0 {1 ns)
I =t HA

Delta NA
11 ([a sto) | |
1 ||y stx| |

Figure 16 - Mixed delays: delaybuf waveform display using +pulse_r/40 +pulse_e/80 switches

NOTE: as shown in the example design in this section, +pul se switches only work with the
Verilog specify block delays, not primitive delays.

SNUG Boston 2002 16 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

6.0 Verilogdelay line models

In the early 1990's | posted a question to the comp.lang.verilog newsgroup asking, "How does
one model adelay line using Verilog?'

A number of answers were posted in response. After receiving a number of rather complex
methods to accomplish the goal, one engineer[15] sent an elegantly smple model similar to the
mode shown in Example 5. Thisis an example of adelay line modd with one input and two
output taps. The first output displays the same waveform as the input signal but delayed by 25ns.

The second output displays the same waveform as the input signal but delayed by 40ns.

“timescale 1ns / 1ns
modul e DL2 (yl1, y2, in);
out put yl1, y2;
i nput in;
reg yl, y2;

al ways @in) begin
y1l <= #25 in;
y2 <= #40 in;
end
endnodul e

Example 5 - Verilog-1995 delay line model with two output taps

A parameterized version of the same model with multiple delay line taps is shown below:

“timescale 1ns / 1ns
modul e DL2 (yl1, y2, in);
out put yl1, y2;
i nput in;
reg yl, y2;

25;
40:;

parameter TAP1
par amet er TAP2

al ways @in) begin
yl <= #TAPl in;
y2 <= #TAP2 in;
end
endnodul e

Example 6 - Parameterized Verilog-1995 delay line model with two output taps

And finally, a parameterized Verilog-2001 version of the same model with multiple delay line taps

is shown on the next page:

SNUG Boston 2002 17 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

“timescale 1ns / 1ns

nodul e DL2
#(parameter TAP1 = 25,
TAP2 = 40)
(out put reg yl, y2,
i nput in);

al ways @in) begin
yl <= #TAP1 in;
y2 <= #TAP2 in;
end
endnodul e

Example 7 - Parameterized Verilog-2001 delay line model with two output taps

Since Verilog delays are ignored by synthesis tools, what do delay lines have to do with synthesis?
Delays may be important to mixed RTL and gate smulations. More on this subject is discussed in
section 11.0.

An important guideline that should be noted in every Verilog book (but often is missing) and
taught in every beginning Verilog class (but often is not), is that whenever an engineer adds a
#delay to a module, the module should be preceded by a" t i mescal e directive; otherwise, the
delaysin the module are at the mercy of thelast "t i mescal e directive declared, which may not
match the desired timing of the current module being compiled. Compiler directives, such asthe
“timescal e directive, are compile-order dependent.

Guideline: Adda" ti mescal e directive in front of every module that contains #delays.

7.0 The#ldeday

To delay or not to delay, that is the question!

Myth: #1 delays are required to fix problems with nonblocking assignments.

| have worked with many engineers at many companies and have often seen engineers add #1 to
the RHS of al nonblocking assignments. When | ask engineers why they have added delaysto
their nonblocking assignments, frequently the answer given is"Verilog nonblocking assignments
are broken and adding #1 fixes the problem!"

Truth: Nonblocking assignments are not broken. The engineer's understanding is broken!

There are afew good reasons and many bad reasons to add #1 to the RHS of nonblocking
assignments. Some of these reasons include:

Good reason #1: Adding #1 to nonblocking assignments will cause an output change to be
delayed by 1 time unit. This often eases the debugging task when using a waveform viewer.

Consider the register models in Example 8 and Example 9.

SNUG Boston 2002 18 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

“tinmescale 1ns / 1ns
modul e reg8 (q, d, clk, rst_n);
output [7:0] q;
input [7:0] d;
i nput clk, rst_n;
reg [7:0] q;

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) g <= #1 8' bO;
el se g <= #1 d;
endnodul e

Example 8 - Verilog-1995 register model with #1 delays

“tinmescale 1ns / 1ns
nmodul e reg8 (
output reg [7:0] q,
i nput [7:0] d,
i nput clk, rst_n

)

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) g <= #1 8' bO;
el se g <= #1 d;
endnodul e

Example 9 - Verilog-2001 register model with #1 delays

These two models will exhibit an output delay of 1nsafter aposedge cl k or after a negedge
rst _n. The delay has effectively implemented a 1ns clk-to-q or rst_n-to-g delay, which can be
easlly interpreted when viewed with a waveform viewer. For some engineers, the small delay
between rising-clock and output-change in the waveform display is sometimes easier to interpret
than when the clock edge and output change are displayed in the same waveform timettic.

The small delay in the waveform viewer can also make it easy to see what the values of the
sequential logic outputs were just prior to the clock edge, by placing the waveform viewer cursor
on the clock edge itself, most waveform viewing tools will display the respective binary, decimal
or hex values next to the signal names near the left side of the waveform display. Then to see the
updated values, the cursor is moved to any transition shown 1ns later in the same waveform

display[1].

Good reason #2: Most high-performance flip-flops have hold times between Ops and 800ps.
Adding #1 to RTL models that drive gate-level models will generally fix any problems associated
with mixed RTL and gate-level smulations (assuming a” t i mescal e time-step of 1ns).
Exceptions would include any gate-level model with arequired hold time of greater than 1ns or
clock distribution models with a skew of greater than 1ns.

SNUG Boston 2002 19 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

Bad reason #1: "Verilog nonblocking assignments are broken!" WRONG! Nonblocking
assignments work fine, even without RHS #1 delays. If you add delays to the RHS of
nonblocking assignments without knowing the correct reason for adding the delays, at some point
you will likely run into problems with mixed RTL and gate-level smulations where the gate-level
model has hold time delays in excess of 1ns, or the clock distribution network has a skew of
greater than 1ns, and the simulation will fail.

Bad reason #2: VCS has built-in optimizations for high-speed cycle-based smulation and some
cycle-based simulators, like VCS, dow down significantly when #1 delays are added to the RHS
of nonblocking assignments.

8.0 VCSsmulation benchmarksusing #1 delays

If you could dramatically improve the performance of your smulator by making one small RTL-
coding change to your designs, would you be interested?

What is the impact to VCS simulation performance by adding #1 delays to the RHS nonblocking
assignments?

To answer the second question, the circuit | used to benchmark VCS simulator performanceis a
worst-case design, comprising atotal of 20,000 flip-flops configured as 20 pipeline stages of
1000-hit pipeline registers as shown in Figure 17. Although this is not representative of atypica
ASIC design, it does directly demonstrate the impact of adding delays to the sequential blocks of

your RTL code.
20 x 1000-bit registers I

A

. N
d ! d| |q iqqtt d| [q iqq2 qu18| d| (g iqq19} d| |4 ! g
1000 E 1000 1000 E 1I]I]I]E 1000 1000 E 1000 i 1000 1000 ! 1000 i 1000 1000 ! 1000

o | T T i
S S N I R
rst_n i i N

Figure 17 - Benchmark design with 20,000 flip-flops (dffpipe.v)
SNUG Boston 2002 20 Verilog Nonblocking Assignments

Rev 1.3 With Delays, Myths & Mysteries

The second benchmark circuit is the same 20,000 flip-flop pipeline design but each flip-flop has
been coded with a d-input inverter and a g-output inverter, just to add lots of combinational
simulation transitions to the design as shown in Figure 18. Again thisis not atypical ASIC design,
but the 40,000 extra inversions should cause more combinational events to the execute during the
second benchmark simulation.

The testbench for these benchmark circuits applied a sequenced series of eight patterns, repeated
1,000,000 times. A large quantity of vectors was chosen to insure that the recorded CPU Times
would be based on event-activity, as opposed to compile time and simulation startup overhead.

20 x 1000-bit registers
with inverted-inputs

and inverted-outputs

Figure 18 - Benchmark design with 20,000 flip-flops and 40,000 inverters (dffpipe.v)

The flip-flops for the benchmark circuits were coded with five small delay variations: (1)
nonblocking assignments with no delays, (2) nonblocking assignments with #1 delays, (3)
blocking assignments with #1 delays (NOT RECOMMENDED), (4) nonblocking assignments
with #0 delays (using ~ def i ne macro substitution), and (5) nonblocking assignments with no
delays (usng * def i ne macro substitution to remove the delay). The corresponding code
fragments are shown in Example 10 - Example 14.

SNUG Boston 2002 21 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) g <= 0;
el se q <= d;

Example 10 - Sequential logic coding style with no delays

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) g <= #1 0;
el se g <= #1 d;

Example 11 - Sequential logic coding style with explicit #1 delays

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) ¢ #1 0O;
el se q #1 d;

Example 12 - Sequential logic coding style with explicit #1 blocking delays (NOT RECOMMENDED!)

“define D #0

al ways @ posedge cl k or negedge rst_n)
if (!rst_n) q <= "DO;
el se g <= "D d;

Example 13 - Sequential logic coding style with explicit #0 delays

“define D

al ways @ posedge cl k or negedge rst_n)
if (!rst_n) q <= "D O;
el se g <= "D d;

Example 14 - Sequential logic coding style with explicit 0-delays by macro substitution

The simulations were run on two different computers running VCS version 6.2. The first was an
IBM ThinkPad T21 laptop computer with Pentium 111-850MHz processor, 384MB RAM,
running Redhat Linux 6.2. The VCS license server was run form this laptop. The second
computer was a SUN Ultra-Sparc 80 with 1GB RAM and running Solaris 8. Again, the license
server for the SUN workstation was the Linux |aptop computer.

SNUG Boston 2002 22 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

The benchmark results are not intended to show superiority of one CPU or operating system over
another. These just happen to be the two CPUs | had readily available in my office to run the

benchmarks.

IBM ThinkPad T21, Pentium 111-850MHz, 384MB RAM, Redhat Linux 6.2
VCSVersion 6.2 - Simulation ended at Time: 800002150 ns

DFF pipeline (no inverters) CE;JOE;Z)G Speed compr)naggtilto no-delay
No delays 292.920 Baseline no-delay model
(Nfz Zlfgki ng#1 delays 376.460 20% slower
(B I:O;T nl%g]%dF?Eagcs)M MENDED) 358.240 22% Slower
o e e 40) 307.630 5% slower
Nonblocking blank delays 292 880 ~same speed

(<="D and ‘define D <no_vaue>)

Table 1 - DFF pipeline simulations - IBM ThinkPad running Linux

IBM ThinkPad T21, Pentium 111-850MHz, 384MB RAM, Redhat Linux 6.2
VCSVersion 6.2 - Simulation ended at Time: 800002150 ns

DEF pipdiine with inverters CPU Time Speed compar ed to no-delay
(seconds) model

No delays 390.140 Baseline no-delay model
Nonblocking #1 delays 0
(<=#1) 462.230 18% dlower
Blocking #1 delays .
(=#1 NOT RECOMMENDED) HEELIED 380 EIBUES
Nonblocking #0 delays N
(<='D and ‘define D #0) 390.320 same speed
Nonblocking blank delays 390,630 ~same speed

(<="D and ‘define D <no_vaue>)

Table 2 - DFF pipeline with combinational logic simulations - IBM ThinkPad running Linux

SNUG Boston 2002
Rev 1.3

23

Verilog Nonblocking Assignments

With Delays, Myths & Mysteries

SUN Ultra 80, UltraSPARC-II 450MHz, 1GB RAM, Solaris 8
VCSVersion 6.2 - Simulation ended at Time: 800002150 ns

DFF pipeline (no inverters) CE;JOE;Z)G Speed compr)naggtilto no-delay
No delays 438.090 Baseline no-delay model
(Nfz Zlfgki ng#1 delays 839.270 92% slower
(B I:O;T nl%g]%dF?Eagcs)M MENDED) ekl 3t EIEHES
(Nfgl?'[‘)’cz;%g #ge?i?\?s W) 447.70 2% Sower
(I\I 22 l?:gcghr(ljg btljaefnllﬁlg g?/r?o_val ue>) 437.960 ~same speed

Table 3 - DFF pipeline simulations - SUN Workstation running Solaris

SUN Ultra 80, UltraSPARC-II 450MHz, 1GB RAM, Solaris 8
VCSVersion 6.2 - Simulation ended at Time: 800002150 ns

DEF pipelinewith inverters CPU Time Speed compared to no-delay
(seconds) model

No delays 668.170 Baseline no-delay model
(Nfzﬂfgk' ng #1 delays 1,112,130 66% Slower
Blocking #1 delays
(=#1 NOT RECOMMENDED) sl 1100 EILIEd
Nonblocking #0 delays
(<='D and ‘define D #0) 744.160 11% dower
Nonblocking blank delays
(<="D and “defineD <no_value>) 673950 1% slower

Table 4 - DFF pipeline with combinational logic simulations - SUN Workstation running Solaris

Based on these benchmark results, it is clear there are significant increases in simulation
performance possible smply by removing the #1 delays from the RHS of nonblocking
assignments.

SNUG Boston 2002 24 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

8.1 Conditionally compiled #1 delays

For engineers interested in retaining the #1 delays for debugging purposes, | recommend that the
#1 delays be added to al designs using a common macro definition as shown in Example 15, and
code all sequentia logic using * D values on the RHS of nonblocking assignments as shown in
Example 16. * D was chosen because "D" stands for delay and it is also very short (half as many
characters astyping " DLY).

/'l To enable <= #1 (NonBl ocki ng Del ays), sinulate with the
fol |l owi ng
/'l command: +def i ne+NBD
/'l Default is to sinulate with the higher performance no-del ay
“ifdef NBD
“define D #1
“el se
“define D
“endi f

Example 15 - Macro definitions for no-delay and explicit #1-delay simulations

/'l Typical sequential |ogic coding style
al ways @ posedge cl k or negedge rst_n)

if (!rst_n) q <= "D O;

el se g <= "D d;

Example 16 - Typica sequentia logic coding style

Using the code from Example 15 and Example 16 with the command line switch +def i ne+NBD
(NBD: NonBlocking Delays) would make all properly coded sequential logic behave equivalent to
the code shown in Example 17, with added #1 delays and degraded simulation performance.

/[l Wth +define+NBD - the equival ent code is:
[l *** slower sinulations ***
al ways @ posedge cl k or negedge rst_n)

if ('rst_n) g <= #1 0;

el se g <= #1 d;

Example 17 - Equivalent sequentia logic coding style after #1 macro substitution

Using the code from Example 15 and Example 16 without the command line switch
+def i ne+NBD would make all properly coded sequential logic behave equivalent to the code
shown in Example 18, with no delays and significantly increased ssimulation performance.

/1 Wth NO +define+NBD - the equival ent code is:
[l *** faster sinulations ***
al ways @ posedge cl k or negedge rst_n)

if ('rst_n) g <= 0;

el se q <= d;

Example 18 - Equivalent sequential logic coding style after no-delay macro substitution

SNUG Boston 2002 25 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

NOTE: After sharing this benchmark information with Mark Warren, Technical Director of the
Verification Group at Synopsys, Mark wanted me to note that VCS simulations of atypical

design could experience a 0%-200% increase in simulation performance with a 30%-50% increase
being typical, as opposed to the 18%-92% increase reported with the contrived benchmark
circuits in this section[12].

The ratio of combinational logic to sequential logic in an actual ASIC design and the possible
inclusion of PLI code could indeed mean that the percentage improvement in simulation
performance would in all likelihood be closer to the 30%-50% figure. However, it is interesting to
observe the tremendous difference in smulator performance related to adding #1 delays to the
nonblocking assignments.

8.2 The VCS +nbaopt Command Line Switch

VCS has a command line switch called "+nbaopt " designed to optimize nonblocking assignments
by removing the #1 delays that might follow a nonblocking assignment.

Using the +nbaopt switch did significantly improve the simulation performance of the model
with #1 delays, but the design till ran 3%-16% slower than an equivalent model without delays
or amodel with macro-defined blank delays. As could be expected, using the +nbaopt switch did
not increase the performance of the models that previously had no delays.

IBM ThinkPad T21, Pentium 111-850MHz, 384MB RAM, Redhat Linux 6.2
VCSVersion 6.2 - including the +nbaopt command switch

DFF pipeline (no inverters) CE;JOE:;:)G Speed compr)na{)gilto no-delay
No delays +nbaopt 293.770 Baseline no-delay model
Nonblocking #1 delays +nbaopt
(<=#1) 311.070 6% dower
Blocking #1 delays +nbaopt
(=#1 NOT RECOMMENDED) 357.360 22% slower

Table 5 - DFF pipeline simulations - no delays vs #1 delays and +nbaopt command switch - IBM ThinkPad
running Linux

SNUG Boston 2002 26 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

SUN Ultra 80, UltraSPARC-II 450MHz, 1GB RAM, Solaris 8
VCSVersion 6.2 - including the +nbaopt command switch

- . CPU Time Speed compared to no-delay
DFF pipeline (no inverters) (seconds) model
No delays +nbaopt 439.000 Baseline no-delay model
(Ngzl;!fgkmg #1 delays +nbaopt 448,630 20% Slower
Blocking #1 delays +nbaopt 547 580 25% Slower

(=#1 NOT RECOMMENDED)

Table 6 - DFF pipeline simulations - no delays vs #1 delays and +nbaopt command switch - SUN Workstation

8.3TheVCS +rad Command Line Switch

running Solaris

VCS has a command line switch called "+r ad" designed to optimize designs for improved
simulation performance. Mark Warren of Synopsys reports that +r ad is actualy afamily of
optimizations that will make improvements to non-timing designs, such as speeding up logic and
event propagation, but +r ad does not affect delay scheduling[12].

Note that the +r ad switch isnot just for cycle-based simulations. Mark Warren reports that there
are some designs that will give very large speedups with +r ad (typicaly the uglier the code, the

larger the speedup).

When | tested the +r ad switch on the Linux laptop computer, the no-delay RTL models ran
23%-26% faster than simulations without the +r ad switch. Even though al smulations ran faster
with the +r ad switch, the models with #1 delays were still about 25% slower than comparable
models without the delays. It was also interesting to note that the +r ad switch helped models
with the macro-added #0 delay to match or dightly beat the simulation performance of models

with no delays.

SNUG Boston 2002
Rev 1.3

27

Verilog Nonblocking Assignments
With Delays, Myths & Mysteries

The same simulations were not tested on the SUN Solaris workstation.

IBM ThinkPad T21, Pentium 111-850MHz, 384MB RAM, Redhat Linux 6.2
VCSVersion 7.0 (early release) (using +rad switch)

DFF pipeline (no inverters) CE;JOE;Z)G Speed compr)naggtilto no-delay
No delays 233.540 Baseline no-delay model
(Nfz Zlfgki ng#1 delays 293.250 26% slower
(B I:O;T nl%g]%dF?Eagcs)M MENDED) Zeeenl 2 EIEHES
o e e 40) 229,290 2% faster
(I\I 22 l?:gcghr(ljg btljaefnllﬁlg g?/r?o_val ue>) 233.100 ~same speed

Table 7 - DFF pipeline smulations - early version of VCS 7.0 and +rad command switch - IBM ThinkPad
running Linux

IBM ThinkPad T21, Pentium 111-850MHz, 384MB RAM, Redhat Linux 6.2
VCSVersion 7.0 (early release) (using +rad switch)

DEF pipelinewith inverters CPU Time Speed compared to no-delay
(seconds) model

No delays 235.710 Baseline no-delay model
Nonblocking #1 delays 0
(<=#1) 294.480 25% dower
Blocking #1 delays .
(=#1 NOT RECOMMENDED) as S 2000 Sl
Nonblocking #0 delays 0
(<='D and ‘defineD #0) 228.410 3% faster
Nonblocking blank delays 0
(<='D and ‘define D <no_value>) 234.510 2% faster

Table 8 - DFF pipeline with combinational logic simulations - early version of VCS 7.0 and +rad command switch
- IBM ThinkPad running Linux

SNUG Boston 2002 28 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

9.0 Multiple common clocks and race conditions?

Are #1 nonblocking assignment delays required to avoid race conditions when multiple common
clocks are generated in the same time step? If sequentia logic is generated using nonblocking
assignments, the answer is no (unless one of the clocksisincorrectly generated from the other
clock signal using a nonblocking assignment, such as: cl kib <= cl kla;)

Consider the case where cl k1a and cl k1b are two copies of the samecl k1 signal as shownin
Figure 19. In this case posedge cl k1a and posedge cl k1b occur at the same simulation time.
Can there be a race condition caused by these two clock signals being generated from different
blocks of RTL code? If the sequential logic driven by these two clocks is properly coded with no-
delay nonblocking assignments, the answer is no.

a

d1
b
d2 2
q1i d
clk1a
clk1b Q |7
rst_n

Figure 19 - Simple sequentia logic driven by two buffered copies of clkl

For this example, al posedge cl k1a nonblocking assignments will be scheduled to be updated in
the nonblocking assignments update queue. Then all of the posedge cl k1b nonblocking
assignments will be scheduled to be updated in the nonbl ocking assignments update queue before
the cl kla updates have been activated in the same time step. Thisinsures that all registered logic
will be correctly pipelined between the no-skew clock domains before the combinational logicis
updated.

10.0 Avoid always blockswith mixed blocking and nonblocking assignments
Now lets reexamine guideline #5 from section 3.0:

Guideine #5: Do not mix blocking and nonblocking assignments in the same aways block.

Of the guidelines that were given in my SNUG2000 paper on nonblocking assignments| 2], this
guideline has probably been the most challenged in public forums. Paul Campbell of Verifarm Inc
points out that one "can safely mix blocking assignments (without delays) that model
combinatoria logic (ie temporary variables) and non-blocking assignments that model flopsin the
same edge triggered aways statement[13]."

SNUG Boston 2002 29 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

Paul is of course correct, but the coding style has its disadvantages, including:

Lo

It can be confusing to understand the event scheduling in this always block.

2. One might forget that only one nonblocking assignment should be used and that the
nonblocking assignment should be listed |ast.

3. Inazero delay model, inputs and their resultant flip-flop outputs will change on the same

clock edge yielding a confusing simulation waveform display.

Consider the ssimple circuit of Figure 20 and the properly coded Verilog model shown in Example
19, without mixed blocking and nonblocking assignments in the same aways block. This model
follows the coding style guidelines detailed in section 3.0.

-

Z [\ d q f q
|/

clk |7

rst_n

Figure 20 - Simple circuit to test mixed blocking & nonblocking assignment coding styles

modul e bl k1 (

out put reg q, /'l registered out put
out put Y, /'l conbi nati onal out put
i nput a, b, c, /1l conbi national inputs
i nput clk, rst_n); // control inputs

W re d;

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) g <= 0;
el se q <= d;

assign d
assign y
endnodul e

& b;
& c;

a
q

Example 19 - Properly coded model with no mixed blocking and nonblocking assignments in the same always
block

When synthesized, the Example 19 RTL code compiles to the logic shown in Figure 21 (for
schematic clarity, the LSl 10K library that isincluded in the default Synopsys tools distribution
was used and set_dont_use commands were run to remove al of the scan flip-flops prior to
synthesis compilation).

SNUG Boston 2002 30 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

a>— \ »
b ANz . ? Dq

clkCr—> o
ret n[C>= #
cC=

Figure 21 - Synthesized version of the blk1 model

ﬁij e =Y

The Verilog code in Example 20 aso correctly models the ssmple circuit of Figure 20, but this
code violates the guideline to prohibit blocking and nonblocking assignments in the same always
block. This coding styleis frequently employed by engineers with aformer VHDL background
who were accustomed to mixing variable and signal assignments in the same process to increase
VHDL simulation performance. There is no simulation performance improvement achieved by
using this coding stylein Verilog.

nmodul e bl kla (

out put reg q, /'l registered out put
out put Y, /'l conbi nati onal out put
i nput a, b, c, /1l conbi national inputs
i nput clk, rst_n); // control inputs

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) g <= 0;
el se begin: logic
reg d; // conbinational internmediate signa
d = a & b;
q <= d;
end

assigny =q & c;
endnodul e

Example 20 - Improperly coded model with mixed blocking and nonblocking assignments in the same always
block

Although the Verilog model of Example 20 simulates and synthesizes correctly, there are good
reasons to avoid this coding style. The most obvious reason to avoid this coding style is to reduce
confusion while interpreting signa transitions in a waveform viewer during debug of this design.
The mixed coding style means that the internal combinational output d does not update when the
inputs to the and gate change. The only time the d-signa updates (in the waveform viewer) ison
aclock edge or at reset assertion. As can be seen in Figure 22, on the second rising clk edge, the
clk has changed, the d-input to the flip-flop has changed and the g-output of the flip-flop has

SNUG Boston 2002 31 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

changed. For avery large design, an engineer is going to need to spend alot of time rationalizing
why inputs and resultant outputs are both changing on the same clock edge. Input changes on
clock edges do not happen in real hardware, thisis smply a side-effect of this unusual coding
style.

clk changes ...
rst n I &

The combinational d- clklb | | ﬁ\ | | | | |
signal does not update
when the a and b inputs a —I

go high

- d input changes at the same time !
... the g output changes

Figure 22 - Confusing waveform display caused by mixed assignments in a sequential always block

Although it is not obviousin Figure 22, the intermediate signal d is not in the same ssimulation
scope as the rest of the signals in this module. Displaying transitions on the d-signal requires that
thel ogi c. d hierarchical signal name (d is declared in the named-block called "l ogi c") must be
added to the waveform display.

nmodul e bl k1b (

out put reg q, /'l registered out put
out put Yy, /'l conbi nati onal out put
i nput a, b, c, /1l conbi nati onal inputs
i nput clk, rst_n); // control inputs

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) g <= 0;
el se begin: logic
reg d; // conbinational internmediate signa

d = a & b;

q <= d,

d =1bx; // to avoid waveform confusi on
end

assigny =g & c;
endnodul e

Example 21 - Improperly coded model with mixed assignments and waveform canceling code

SNUG Boston 2002 32 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

| have been told of one engineer who codes with a mixed assignment style that includes assigning
X'sto al of theintermediate loca signals after making the nonblocking assignment, just to make
sure nobody can display the intermediate signals in a waveform display and become confused! The
highly unusua coding style is shown in Example 21. In this coding style, the intermediate signals
are displayed as unknowns for the entire simulation, even though they took on momentary values
to update the appropriate sequentia logic. This seemslike alot of trouble just to use the mixed
coding style.

Upon examination, | believe the coding style of mixing blocking and nonblocking assignmentsin
the same al ways block will not simulate any faster, is not quite as understandable (requires a
better understanding of Verilog event scheduling) and is no easier to code (more opportunities to
incorrectly mix blocking and nonblocking assignments and quite confusing in asimulation
waveform display). Even though the mixed style can work, | consider the mixed style to be more
error prone for coding and for waveform interpretation. Since the coding style offers no distinct
advantage over other recommended coding styles, | stand by the guideline to not mix blocking
and nonblocking assignments in the same al ways block.

Note that the safest, but still not recommended, way to mix assignmentsis to declare the
intermediate d-signa as alocal variable in a named block as shown in Example 21. The reason
thisisthe safest technique is because if the d-signal is declared within the global-module space,
and if the signal is accidentally either directly or through other combinational equations,
connected to an output port as shown in Example 22, synthesis tools will infer an extra flip-flop
for thissignal as shown in Figure 23.

nmodul e bl k2a (

output reg q, g2, /'l registered outputs

out put Y, /'l conbi nati onal out put

i nput a, b, c, /1l conbi national inputs

i nput clk, rst_n); // control inputs

reg d; // conbinational internediate signa

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) g <= 0;
el se begin

d = a & b;
q <= d;
end

assigny =q & c;

always @d) g2 = d;
endnodul e

Example 22 - Improperly coded model with mixed assignments and an extra connection to the d-signal

SNUG Boston 2002 33 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

—F >
Clk[Com < -
|o;;1 A j D q2
=T}
rst_n[oe <]l
a : |
b a2 i
> .-
| ¥ _1
:
CD= 1} ANZ Y

Figure 23 - Synthesized version of the blk2a model with extra sequential logic

11.0 Mixed RTL & gate simulations
What are mixed RTL and gate-level smulations?

On large ASIC projects with multiple designers, an ASIC istypically partitioned to permit
multiple designers to code smaller portions of alarger design as shown in Figure 24. As multi-
engineer designs progress, it isnot unusual for one of the RTL partitions to be completed and
synthesized before the other RTL partitions are done. It isagood ideato begin testing of the
completed-synthesized block before the rest of the blocks have been synthesized. Putting together
asimulation configuration that tests in-design RTL blocks with the completed gate-level block
allowstesting of the gate-level model before the rest of the design is complete. Thisis mixed RTL
and gate-level simulation.

ala alb b1a b1b cla clb
a1l b1 c1 d1
- | ala <= al; bla <= bl; cla <= cl; —
a?a <= a?; b2a <= b2; c2a <= g2;
32 alb <= ...; b2 blbh <= ...; C2 clb <= ...; d2
azb <= ...; b2b <= ...; b <= ...;
bl <= ...; cl <= ...; dl <= ...;

—] b2 <= ...; e a2 <= ...; dz <= ...;
clk
rst_n

Figure 24 - ASIC design with multiple RTL partitions

On large projects, the desire to run a mostly RTL-simulation with one gate-level block is not
confined to the situation where one engineer finishes a block before the other blocks are

SNUG Boston 2002 34 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

synthesized; indeed, mixed simulations are often run to test a gate-level block in isolation from
other gate-level blocksin adesign. This helpsto narrow the focus of any potential debugging
effort and aso, because RTL models generally ssimulate much faster than equivalent gate-level
models, using fewer gate-level models will generally improve simulation efficiency.

The question is, are there any problems related to mixed RTL and gate-level simulation?

Consider the block diagram of an ASIC partitioned into three design blocks as shown in Figure
24. For pure RTL ssimulations with an ideal common clock (no delay and no skew in the clock
path), adhering to the coding guidelines outlined in section 3.0 of this paper will yield arace-free
RTL smulation.

Now assume that one of the RTL partitions has been completed, compiled (synthesized) and
saved as a gate-level model as shown in Figure 25. The red flip-flopsin the gate-level model have
non-zero setup and hold time requirements and the real logic has actual non-zero propagation
delays. Isthere a problem with a 0-delay RTL model driving a gate-level model with real setup
and hold time requirements? Is there a problem with a gate-level model with real propagation
delays driving a0-delay RTL model?

always @ (posedge clk or negedge rst n)
if (!rst n)...; // reset regs
else begin
ala <= al;

aZa <= a2; mod2.vg
alb <= ...: (gates model)
azb <= ...;

bl <= #1 ...; mod1.v Tsetup = 1.3ns
b2 <= #1 ...; (RTL model) Thold = 0.6ns

end
=nl

ala alb cla clb
a1l b1 c1 d1

b1a b1b
- | ala <= al; cla <= cl; —
aZa <= a?2; c?2a <= c2;
a2 alb <= ...; b2 c2 clb <= ...; d2
azb <= ...; & c?b <= ...;
b1 <= #1 ...;) dl <= ...;
_d b2 <= #1 ...; l l az <= ...;
clk
rst_n

Figure 25 - Mixed RTL and gate-level design with two RTL and one gate-level partitions

mod3.v
(RTL model)

111 RTL-to-gates simulation

First examine the setup time requirements of the gate-level model. If the gate-level model has a
non-zero setup time requirement, there is no problem meeting the setup time requirements of the

SNUG Boston 2002 35 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

model when driven by a 0-delay RTL model. As soon asthereisarising clock edge, the RTL
model immediately changes the outputs that are being driven to the gate-level model so the
outputs are available for afull clock cycle before they must be clocked into the gate-level model.
Conclusion: RTL-to-gates: no setup time problems.

Second, examine the hold time requirements of the gate-level model. If the gate-level model has a
non-zero hold time requirement, there is a problem meeting the hold time requirements of the
model when driven by a0-delay RTL model. Again, as soon asthereisarising clock edge, the
RTL model immediately changes the outputs that are being driven to the gate-level model, but the
gate-level model expected the old data value to be held to meet the hold time requirements of the
gate-level model. The RTL model changed the gate-level inputs in zero-time, violating the hold
time requirement of the gate-level mode.

Conclusion: RTL-to-gates: there are hold time problems.

How can we fix the RTL-to-gates hold time problem? First, recognize that hold times for most
contemporary high-performance ASIC and FPGA families are generaly less than 1ns (typica
numbers are Onsto 0.8ns). By adding #1 delays to the outputs of the RTL model, the RTL model
will hold the pre-clock output values for 1ns, effectively creating a clk-to-q delay that will meet
most ASIC and FPGA hold time requirements.

Will #1 RTL delaysfix al RTL-to-gates hold time problems? No. If the gate-level model has hold
times that are greater than 1ns, the #1 RTL delays will be insufficient to meet the required hold
times. One common example of amodel that may have hold time requirements that exceed 1nsis
an instantiated RAM model. It is not unusual for RAM models and other instantiated devices to
have input hold times that are greater than 1ns. For these instantiated models, and indeed for any
interface between modules, an engineer needs to document the hold time requirements for all
inputs and specially note any input hold time that is greater than 1ns. RTL models that drive
inputs with longer hold time requirements will need to increase the #1 delays to exceed the hold
time delays of the more critical inputs. Adding a#2 to specific RTL outputs will insure that those
outputs will hold their old values for 2ns after a posedge clk.

Since most device hold times are less than 1ns, an engineer who has heretofore ignorantly added
#1 delaysto al nonblocking assignments, has been lucky and has been able to do mixed RTL and
gate-level smulation unaware that potential hold time problems could have caused ssmulation
fallures.

Note that the nonblocking assignment with #1 delay isreally the same idea asthe delay line
models of section 6.0 with very short transport delays.

11.2 Gatesto-RTL simulation
When investigating gates-to-RTL simulations, first note that the RTL model being driven by a

gate-level model has no setup or hold time requirements.

Are there any setup time problems involved in doing a gates-to-RTL smulation? After an active
clock edge, as long as the propagation of data from the gates model to the RTL model happens

SNUG Boston 2002 36 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

within one clock period, there is no setup time violation problem. If the propagation time of the
data from the gates model to the RTL model exceeds one clock period, thereisareal design
problem (design does not meet timing) that must be fixed, and not a simulation problem.
Conclusion: gates-to-RTL: no smulation-related setup time problems.

Are there any hold time problems involved in doing a gates-to-RTL simulation? After an active
clock edge, even an ultrafast gate-level design has some propagation delay and since the RTL
model has no hold time requirement, there will be no hold time violation problemsin the
simulation.

Conclusion: gates-to-RTL: no hold time problems.

11.3 A gate-level clock tree with clock skew

Adding vendor models to a system simulation can add clock skew in two ways:. (1) instantiating
clock circuitry, such asaPLL, with inherent clock skew coded into the model between multiple
buffered clock outputs, and (2) by adding gating to the clock paths inside the vendor model. Any
time skew is added to multiple clock signals, thereis potential for incorrect smulation behavior.
Note thisis a problem that is not related to the implementation of nonblocking assignments and
the Verilog event queue. This problem will exist for any logic smulator.

Adding #1 delays to output-driving nonblocking assignments will solve the clock-skew problem,
aslong asthe skew isless than 1ns. In Figure 26, a#1 delay has been added to the RTL output
assignments for each module. The #1 delays are required for the nod1. v and nod2. v models.
The #1 delay isnot needed in the nod3. v model because it does not drive the inputs of another
RTL model.

ala alb b1a b1b cla clb
al b1 c1 d1
- | ala <= al; bla <= bl; cla <= cl;
aZa <= a2; b2a <= b2; c?a <= c2;
az alb <= ...; b2 blbh <= ... C2 clb <= ...; d2
azb <= ...; b2b <= ...; b <= ...;
clk1a bl <= #1 ...; cl <= #1 ...; dl <= #1 ...;
PLL J_C b2 <= #1 ...;] c2 <= #1 ...;] a2z <= #1 ...;
2 #0.1
£ #0.0 clk1b
@ #0.2 clkic
rst_n

Figure 26 - Partitioned ASIC design with instantiated clock tree module with skewed clock buffers

SNUG Boston 2002 37 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

114 Vendor modeswith clock skew

If avendor provides aVerilog model, either as a behavioral model with delays or as a gate-level
model with delays, the vendor may have introduced gating or skew into the clock path that could
cause mixed RTL and vendor-model ssimulations to fail.

Just as was the case with the instantiated clock-tree module with skewed clock buffers of section
11.3, aslong as the clock-gating or clock-path delays are shorter than 1ns, the mixed-model
simulation problem can be fixed by making sure that the outputs of the RTL model that drives the
vendor model has been coded using nonblocking assignments with #1 delays. If the clock-gating
or clock path delays exceed 1ns, it follows that the driving RTL model will require nonblocking
assignment delays to match the longest clock-path delay.

Regardless of the implemented simulation solution, frequent nasty complaints and vicious lega
threats should be sent to any vendor that does not provide the ability to enable ideal, non-gated
clock netsinside their models, or in the case of vendors that provide clock-tree circuitry, such as
PLL models, the ability to disable al clock skew between multiply driven clock sources.

11.5 Erroneousvendor models with blocking assignmentsfor sequential logic

One concern that has been raised about vendor modelsis, what if the vendor made a mistake and
modeled sequentia (clocked) logic using blocking assignments or perhaps worse, blocking
assgnments with #1 delays. Can | safely use these modelsif | add #1 delays to my nonblocking
assignments? The answer is no. Nonblocking assignments with #1 delays on our RTL model do
not guarantee that interaction with the problematic vendor model will work.

Consider the scenario of mixed vendor models with a proper RTL design as shown in Figure 27.

Good RTL model
coding style

Bad vendor2
coding style

Bad vendor1
coding style

a ¥ blocking b nonblocking c blocking ¥ d
— 1 assignments assignments assignments
Q Q
clk
rst_n i i

Figure 27 - Block diagram of mixed simulation with poorly coded vendor models

Assume that vendor #1 has coded their model with either of the blocking assignment coding styles
of Example 23 or Example 24.

SNUG Boston 2002 38 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

nmodul e vendor1 b0 (
out put reg b,
i nput a, clk, rst_n);

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) b 0;
el se b a;
endnodul e

Example 23 - Bad vendor #1 model - blocking assignments with no delays

“tinmescale 1ns / 1ns
nmodul e vendor1 b1l (
out put reg b,
i nput a, clk, rst_n);

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) b #1 0O;
el se b #1 a;
endnodul e

Example 24 - Bad vendor #1 model - blocking assignments with #1 delays

Further assume that our RTL design has been properly coded with one of the nonblocking
assgnment coding styles shown in Example 25 or Example 26.

nmodul e myrtl _nb0 (
out put reg c,
i nput b, clk, rst_n);

al ways @ posedge cl k or negedge rst_n)
if (!'rst_n) c <= 0;
el se c <= b;
endnodul e

Example 25 - Good RTL model - nonblocking assignments with no delays

“tinmescale 1ns / 1ns
modul e myrtl _nbl (
out put reg c,
i nput b, clk, rst_n);

al ways @ posedge cl k or negedge rst_n)
if (!'rst_n) c <= #1 O;
el se c <= #1 b;
endnodul e

Example 26 - Good RTL model - nonblocking assignments with #1 delays

SNUG Boston 2002 39 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

And finally assume that vendor #2 has coded their model with either of the blocking assignment
coding styles of Example 27 or Example 28.

nmodul e vendor 2_b0 (
out put reg d,
i nput c, clk, rst_n);

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) d 0;
el se d C;
endnodul e

Example 27 - Bad vendor #2 model - blocking assignments with no delays

“tinmescale 1ns / 1ns
nmodul e vendor 2_b1 (
out put reg d,
i nput c, clk, rst_n);

al ways @ posedge cl k or negedge rst_n)
if ('rst_n) d #1 0O;
el se d #1 c;
endnodul e

Example 28 - Bad vendor #2 model - blocking assignments with #1 delays

First examine the interaction of a bad vendor model driving the good RTL model. A high-
performance Verilog simulator, like VCS, has the ability to flatten module boundaries, effectively
combining the blocking and nonblocking assignments into common always blocks clocked by the
same clock edge. Depending on how the compiler combines the statements from the two different
modul e sources (vendor #1 statement followed by RTL statement -or- RTL statement followed
by vendor #1 statement), there may or may not exist a simulation race condition as shown in
Figure 28 and Figure 29.

SNUG Boston 2002 40 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

Equivalent code after compiled
and flattened designs

Scenario #1 has a potential
race condition - Scenario #2

has no race condition

vendori_b0 myrtl_nb0

c<=bh

w [[

always @ (posedge clk ...
. begin

b = a;

c <=

always @ (posedge clk ...
. begin
o <=

rst_n
always @ (posedge clk ...
vendori_b1 myrtl_nb0 . fork
a b c c <=
b=#1a c<=h
always @ (posedge clk ...
@) (@] ... begin
clk e <= b;
rst_n ‘ b = #1 a; ...

Figure 28 - Bad vendor #1 models driving good RTL models (with nonblocking assignments and no delays)

Note that the potential race conditions could exist whether or not we have added a#1 delay to
the RTL model.

Next examine the interaction of agood RTL model driving a bad vendor model as shown in
Figure 30 and Figure 31. Again, a high-performance Verilog smulator has the ability to flatten
module boundaries, effectively combining the blocking and nonblocking assignments into common
always blocks clocked by the same clock edge. Irregardless of how the compiler combines the
statements from the two different module sources (RTL statement followed by vendor #2
statement -or vendor #2 statement followed by RTL statement), there will be no race condition
assuming a common clock to both modules or multiple clocks with no skew between the clock
signals.

Note that there is no race condition whether or not we have added a#1 delay to the RTL model.

SNUG Boston 2002 41
Rev 1.3

Verilog Nonblocking Assignments
With Delays, Myths & Mysteries

Equivalent code after compiled
and flattened designs

vendori_b0 myrtl_nb1

Scenario #3 has a potential
race condition - Scenario #4
has no race condition

always @ (posedge clk ...

. begin
b = a;
a b c c <= #1 b;
b=a c<=#b

always @ (posedge clk ...
(@] (@] . begin
clk o <= #1 b;

rst_n a;
always @ (posedge clk ...
vendori_b1 myrtl_nb1 . fork
b = $#1 a;
a b c c <= #1 b;
b=#1a c<=#lb
always @ (posedge clk ...
@) (@] ... begin
clk o <= {1 b;
rst.n ‘ b = #1 a;

Figure 29 - Bad vendor #1 models driving good RTL models (with nonblocking assignments and #1 delays)

Equivalent code after compiled
and flattened designs

myrtl_nb0 vendori_b0

c<=b d=c¢ [

w T

Scenario #5 & Scenario #6
both simulate with o
race conditions

always @ (posedge clk ...
. begin
o <=

always @ (posedge clk ...
. begin

rst_n c <=
always @ (posedge clk ...
myrtl_nb0 vendori_b1 . begin
o <= b;
b c d #1 <
c<=bh d=#lc [
always @ (posedge clk ...
[__ @) (_ ... fork
- d = #1 c;
clk ‘ fork - join < : c
rst_n C <= B/ .-

Figure 30 - Good RTL models (with nonblocking assignments and no delays) driving bad vendor #2 models

SNUG Boston 2002 42 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

c<=#1b

Equivalent code after compiled
and flattened designs

vendori_b0

:

c<=#1b

vendori_b1

d=#c¢

Scenario #7 & Scenario #8
both simulate with o
race conditions

always @ (posedge clk ...
. begin

o <= {1 b;

d =

(=

always @ (posedge clk ...
. begin

d = e;

c <= #1 b; ...

always @ (posedge clk ...

. begin
o <= $#1 b;
d = #1 = ...

always @ (posedge clk ...
. fork

fork - join

|

d = #1 o
c <= #1 b; ...

Figure 31 - Good RTL models (with nonblocking assignments and no delays) driving bad vendor #2 models

Compiling the results into Table 9, we see that adding a#1 does not always make a difference
when interacting with bad vendor designs modeled using blocking assignments. Clearly vendor
problems must be reported to and fixed by the vendor and not just ignored hoping that a#1 delay
will fix the problem (because the #1 delay will not aways fix the problem!)

Table 9 - Summary of potentia race conditions when bad vendor models interact with good RTL models

Vendor1 I RTL I Vendor2? R Condition?
Model Model Model ace L-ondition:
b=a potential race condition
c<=b
b=#1a NO race condition
b=a potential race condition
c<=#1b
b=#1a NO race condition
d=c NO race condition
c<=bh
d=#1c¢ NO race condition
d=c NO race condition
c<=#b
d=#1c¢ NO race condition

SNUG Boston 2002

Rev 1.3

43

Verilog Nonblocking Assignments
With Delays, Myths & Mysteries

11.6 The 20,000 flip-flop benchmark with #1 delaysin the 1/O flip-flops

All of the preceding mixed RTL and gate-level simulation problems can be traced to signals
becoming skewed while crossing module boundaries. If delays are added to nonblocking
assignments at RTL module boundaries, while leaving al internal nonblocking assignments coded
without #1 delays as shown in Figure 32, what impact does that have on simulation performance?

Added #1 delays 20 x 1000-bit registers Added #1 delays
to iof models L; to iof models

T N]

' N

S W e No delays on e S S

i A . : . 1 | dff models | - , I 7 .

i L T T o i
d ! d| |q iqqt d| [q iqq2 qq18} d| [q iqq19} d| |a ! q
1000 i 1000 1000 E 1I]I]I]i 1000 1000 E 1000 i 1000 1000 i 1000 i 1000 1000 i 1000

A o R o N o I | |
P 1<) N N N
rst_n)) N

Figure 32 - Benchmark design with #1 delays only added to the 2,000 I/O flip-flops (iof pipe.v)

The testbenches that were used in section 8.0 were re-run on the same Linux and Solaris machines
that were used in the earlier benchmark simulations. The results compared to no-delay and full #1
delay benchmark ssimulations are shown in Table 10 and Table 11.

IBM ThinkPad T21, Pentium 111-850MHz, 384MB RAM, Redhat Linux 6.2
VCSVersion 6.2 - #1 delays only added to the 2,000 1/O flip-flops

- . CPU Time Speed compar ed to no-delay

DFF pipeline (no inverters) (seconds) mode
No delays 292.920 Baseline no-delay model
Nonblocking #1 delays 0
(<=#1) 376.460 29% dower
Nonb_l ocking #1 delays only on the 2,000 375710 28% <ower
1/O flip-flops

Table 10 - DFF and |OF pipeline simulations - IBM ThinkPad running Linux

SNUG Boston 2002 44 Verilog Nonblocking Assignments

Rev 1.3 With Delays, Myths & Mysteries

SUN Ultra 80, UltraSPARC-II 450MHz, 1GB RAM, Solaris 8
VCSVersion 6.2 - #1 delays only added to the 2,000 1/O flip-flops

- . CPU Time Speed compared to no-delay
DFF pipeline (no inverters) (seconds) modd
No delays 438.090 Baseline no-delay model
Nonblocking #1 delays 0
(<=#1) 839.270 92% dower
Nonb_l ocking #1 delays only on the 2,000 833.720 90% S ower
1/O flip-flops

Table 11 - DFF and IOF pipeline simulations - SUN Workstation running Solaris

The disappointing results indicate that confining delays to just the I/O flip-flops helped simulations
run only dightly faster than equivalent benchmark circuits with #1 delays added to all flip-flops.

Apparently adding #1 delays to some nonblocking assignments will kill optimizations for all
nonblocking assignmentsin a design. Vendors should take note of this result and realize that
indiscriminately adding #1 delays to their models will have a huge impact on the smulation
performance of carefully crafted customer RTL code.

12.0 Why run gate-ssmulations with SDF delays?

Why would anyone even do gate level simulations with delays in this modern design era of Static
Timing Anaysis (STA) tools and equivalence checking software?

There are some very practical reasons why engineers may still do timing based simulations with
back-annotated SDF delays and timing checks. Running simulations with back-annotated SDF
delaysis sometimes referred to as "dynamic timing analysis," a somewhat fancy name for gate-
level simulations with SDF timings.

121 Full system smulation

Doing Static Timing Analysis (STA) on an ASIC isrelatively easy to do. Only onelogic library is
required so thereis anice, convenient, closed environment where all timing models are available
for timing anaysis.

Full system STA is still not acommon reality. Timing verification of a mixture of FPGASs, ASICs,
standard ICs, and interconnect on a board design typically requires dynamic timing analysis,
because availability of compatible STA models for the multitude of different devices and board
traceisrarely available.

12.2 Equivalence checking softwar e costs money (surprisel)

Gate smulations can frequently be avoided by doing comprehensive RTL smulations, STA of the
design and equivalence checking between the RTL and gate-level models. Unfortunately, a startup

SNUG Boston 2002 45 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

or other companies on atight budget frequently will only have the resources to buy a simulator
and a synthesis tool, such as DesignCompiler. DesignCompiler gives the ability to transform an
RTL design into gates and to perform static timing analysis on the design, but in the absence of an
equivalency-checking tool, gate-level smulations must be run to verify that the gate-level design
matches the pre-synthesis RTL design.

The second-tier funded design team usually acquires afaster and more comprehensive STA tool
in the form of PrimeTime. The third-tier funded company may have the resources to buy an
equivalence checking tool such as Formality. Some of the third-tier companies may choose
Physical Compiler before choosing formal verification tools. By the way, al of these companies
also needed a Verilog smulator (and they're not free either!)

Does that mean that first-tier and second-tier design teams should acknowledge their financial-
backing inadequacies and just give up? Obvioudly, not.

Good methodologies and good coding practices can often minimize the problems that would be
identified by more advanced tools. Companies with limited resources will need to plan carefully
and judicioudly partition a design to increase the probability of success so that when the final gate-
simulations with SDF timing are performed, the probability of passing al of the simulation
validation suites will be high; thereby reducing the likelihood that multiple, Slow gate-level-
simulations with SDF delays will be required.

As aside-note, the upper-tier design teams still may choose tools to accelerate the rapid
deployment of verification environments like VERA or e-Specman before choosing to purchase
equivalence checking tools. So many tools ... so little money!

12.3 Final regression with SDF delaysto verify STA and equivalence checked models

Aninteresting fact isthat it still may be useful to run that final gate-simulation with SDF timing to
verify that the STA-checked and equivalence-checked design is correct.

A few years ago, one SNUG attendee (identity unknown) reported that out of ten ASIC designs
he had worked on, SDF-delay gate-simulations revealed problems not reported by STA tools on
nine of the ten designs.

| am not personally aware of the types of problems that are revealed by gate-level ssimulations that
are not caught by STA and equivalence checking tools. If anyone knows of actua problems
caught by gate-smulations that were missed by STA and equivalence checking tools, please email
your experiencestocl i f f c@unbur st - desi gn. com | hope to track and publish common
problems that were found by gate-level smulations, not detected by other tools. Over time, this
tracking list may be used to improve other tools.

SNUG Boston 2002 46 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

13.0 Testbench techniquesfor cycle-based friendly smulation

There are afew simple tricks that can help engineers test their cycle-based RTL designs and avoid
common Verilog race conditions. Some of these tricks are detailed in this section.

13.1 Reset attimeO

Asserting reset at time 0 using a blocking assignment can cause a simulation race condition. Why?
Because al procedural blocks become active at time O. If thei ni ti al block in Example 29
becomes active before the al ways block, the al ways block will not recognize reset until the
next detected posedge cl k or the next assertion of reset.

initial begin
rst_ n = 0;

end. .

al ways @ posedge cl k or negedge rst_n)

Example 29 - Potential race condition while asserting reset at time 0

In reality, even though it is not defined by the IEEE Verilog Standard, most vendors have
implemented Verilog simulators to activate all al ways blocks before activating i ni ti al blocks,
which meansthat the al ways blocks are ready for the reset signal before the reset signal is
definedinani ni ti al block.

A designer should not count onii ni ti al blocks being started after all al ways blocks. A smple
way to avoid the race condition is to insure that the first reset signal if asserted at time O is
assigned using a nonblocking assignment as shown in Example 30. The reset nonblocking
assignment will force the reset signal to be executed at the end of time step O, after all of the

al ways blocks have become active. Thiswill force the al ways blocks to trigger again when the
reset is updated, still at time O.

initial begin
rst_ n <= 0;

end. .

al ways @ posedge cl k or negedge rst_n)

Example 30 - No race condition while asserting reset at time 0

13.2 Reset on thefirst clock edge

Another way to avoid the race condition is to assert reset within 1-2 clock cycles after the
simulation starts. One typically ignores unknowns within the first couple of clock cycles, the same
asif rea hardware were powering up.

SNUG Boston 2002 47 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

13.3 Clock-low at timeO

A common Verilog clock oscillator implementation is shown in Example 31. | typically start a
simulation at time O with the clock signal at the logic-level 0. Thisis how | code most clock
oscillators in my testbenches.

“define cycle 10

iﬁitial begi n

clk = O;
forever #(cycle/2) clk = ~clk);
end

Example 31 - Simple clock oscillator with clock-low at time O

For those rare designs that must implement and trigger off of arising clock edge at time O, the
clock oscillator functionality can be implemented as shown in Example 32.

“define cycle 10

initial begin

clk <= 1;

forever #(cycle/2) clk = ~clk);
end

Example 32 - Non-race clock oscillator with clock-high at time zero

This implementation of the clock oscillator avoids race conditions at time O by forcing the clock
signal to go high at the end of time O, after al sequentia processes have become active. After the
first rising clock edge at time O, all subsequent clock transitions are executed with the more
simulation-efficient blocking assgnment inside the f or ever -statement.

13.4 Change stimuluson clock edges

A superior testbench creation strategy is to make input assignments on the inactive clock edge
whenever possible as opposed to using fixed #delays in the stimulus code. The problem with fixed
delaysisif the engineer decides to test the design at a different frequency, many if not all of the
fixed delays will have to be modified. A testbench created with stimulus changing on clock edges
rarely has to be modified when the clock cycle of the design is changed.

SNUG Boston 2002 48 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

14.0 Problemswith the Bergeron race-avoidance guidelines

Janick Bergeron has written a fine book on writing testbenches, but | find myself in strong
disagreement with some of the guidelines he shares in his book. Bergeron gives the following four
"Guidelines for Avoiding Race Conditions:[10]"

1. If aregister is declared outside of the aways or initial block, assign to it using a nonblocking
assignment. Reserve the blocking assignment for registers local to the block.

2. Assignto aregister from asingle aways or initia block.

3. Use continuous assignments to drive inout pins only. Do not use them to model internal
conbinationa functions. Prefer sequential code instead.

4. Do not assign any value at time 0.

Of these guidelines, | disagree with guidelines 1, 3 and 4, and | believe guideline 2 is understated.

With reference to Bergeron guideline #1: As detailed in section 10.0, | see no compelling reason
to mix blocking and nonblocking assignments in the same aways block. | do not believe this
guideline makes simulations significantly faster, the coding style more understandable (in fact |
believe this coding style requires a more in-depth understanding of the Verilog event queue to
understand why this works) and adherence to this guideline does not make the functionality easier
to code. Note the internally declared variable is visible to smulation waveforms at alower level of
hierarchy, which reduces design observability. Even if the declaration is moved outside of the
always block, the waveform display will show both input and resultant output signals changing on
the same waveform clock edge (very confusing).

With reference to Bergeron guideline #2: | largely agree with this guideline but | would extend it
to say:

Cummings Guideline #6: Do not make assignments to the same variable from more than one
al ways block (or from the perspective of atestbench, from more than onei ni ti al block).

With reference to Bergeron guideline #3: Most ssimple combinational logic is more easily and
much more concisaly coded using continuous assignments. | typically code a combinational

al ways block when | want to usef or -loops, case statements or expliciti f -el se statements. |
sometimes code a large combinationa al ways block to show the grouping of a set of closely-
coupled equations. | do not believe the Bergeron guideline makes simulations significantly faster,
the coding style more understandabl e or the functionality easier to code (in fact, a combinational
al ways block frequently has additional declaration overhead and a more verbose
implementation).

With reference to Bergeron guideline #4: The apparent intent is to avoid race conditions that can
occur at time 0. As shown in section 13.0 this can be easily avoided by making the first reset
assignment using a nonblocking assignment and/or making the first clock assgnment using a
nonblocking assignment. | see no reason to leave simulation signals undefined at time O.

SNUG Boston 2002 49 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

15.0 Conclusions and Recommendations

Bergeron makes the observation that he had "yet to see a single testbench that ssimulates with
identical results on Verilog-XL and VCS[9]." | believe Bergeron is following the wrong
guidelines.

When following the guidelines presented in this paper, except when there have been simulator
bugs, | have yet to see a testbench simulate differently between any two major Verilog simulators.

Adding a#1 delay to the RHS of nonblocking assignments can provide some utility, but it also
has a significant performance cost during the highest performance Verilog simulations. Although
the +nbaopt compiler switch described in section 8.2 can improve the performance of
nonblocking assignments with #1 delays, the switch still does not cause #1-delay coded models to
achieve quite the same simulation performance as no-delay models.

If an engineer ingsts on using #1 delays with nonblocking assignments, it would be best to add
the delay asa ™ D macro definition as described in section 8.1 to still permit simulations without
delays that can run up to 100% faster than smulations with #1 delays.

Based on the above observations, | still prefer the simplicity of coding nonblocking assignments
with no delays. If delays are later required for mixed RTL and gates simulations, | can add the
required nonblocking assignment delays to the outputs of my models (the only place whereit is
really required for correct ssimulation) or | can quickly open my design files and globally substitute
/ <=/ <= " DI and add the conditiona " D macro definition (basically | am lazy and can fix mixed
simulation race problems very easily if necessary). Yes| know that the global substitution will
also introduce syntax errors in the few places where | have used the |ess-than-or-equal-to
operator (<=) but those are easily detected and corrected syntax errors when the design is
recompiled.

The dternate and equally valid strategy isto add conditional = D macro definitions right from the
start of aproject to all RTL models. This strategy will help avoid 90%+ of the potential mixed
simulation problems that might occur in the future. It is also an easy coding guideline to impose
on the less-Verilog-educated masses. Keep in mind that a#1 delay is not aways enough to fix all
mixed ssimulation problems.

Using either of the above techniques, it would till be wiseto executea''grep " <= #1" *.v"
command to find inefficient assignments that will serioudy impact smulator performance. If you
are using an operating system that does not support the grep command, you probably having
bigger problems to worry about than simple #1 delay usage!

Vendors must consider the many ways that their IP may be used in simulations with ideal RTL
Verilog code. Vendor IP should be modeled either with ideal clock signals (no logic or skew
delaysin the clock paths) or permit the selection of an ideal clock signal to facilitate mixed RTL
and gate-level simulations. | recommend that an ideal clock network be selectable by either

SNUG Boston 2002 50 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

making the macro definition, * def i ne | DEAL_CLOCK or by turning on the command line macro
definition +def i ne+I DEAL_CLOCK which is equivaent to the RTL macro definition.

Engineers must understand why delays might be added to nonblocking assignments to
comprehend that a#1 delay may not always be sufficient to fix mixed RTL and gate-level
simulations. If the clock skew is greater than 1ns or if a gate-level model has an input hold-time
requirement of greater than 1ns, the ignorantly applied #1 delays will not fix the smulation
problem and much unnecessary cussing will ensue!

151 Recommended VCS enhancement: +nbal command switch

Engineers could avoid coding most nonblocking assignment #1 delays if VCS and other leading
simulator-vendors would implement a+nbal command line switch to automatically add #1
delaysto all no-delay nonblocking assignments in sequentia always blocks.

The +nbal switch could assist engineersto easily detect smulation problems related to deficient
vendor models, skewed clock delays or mixed RTL and gate-level smulations. This switch would
prove a vauable debugging tool in large, mixed, system ssimulation environments.

16.0 Acknowledgements

My thanks to Leah Clark of Cypress Semiconductor and Steve Golson of Trilobyte Systems for
reviewing and providing valuable feedback about this paper. And my thanks to Mark Warren,
Technical Director of the Verification Technology Group at Synopsys for answering questions
and offering suggestions related to cycle-based smulation and simulation acceleration using VCS.

17.0 References

[1] Adam Krolnik, personal communication.

[2] Clifford E. Cummings, "Nonblocking Assignments in Verilog Synthesis, Coding Styles That
Killl," SNUG (Synopsys Users Group) 2000 User Papers, section-MC1 (1% paper), March
2000. Also available at www.sunburst-design.com/papers

[3] Clifford Cummings, "Correct Methods For Adding Delays To Verilog Behavioral Models,"
International HDL Conference 1999 Proceedings, pp. 23-29, April 1999. Also available at
www.sunburst-design.com/papers

[4] |EEE Standard Hardware Description Language Based on the Verilog Hardware
Description Language, IEEE Computer Society, |IEEE, New York, NY, |IEEE Std 1364-
1995

[5] |EEE Standard Verilog Hardware Description Language, IEEE Computer Society, |EEE,
New York, NY, |IEEE Std 1364-2001.

[6] IEEE P1364.1/D2.1 Draft Standard for Verilog Register Transfer Level Synthesis,
http://www.eda.org/vlog-synth/drafts.html

[7] Janick Bergeron, Writing Testbenches, Functional Verification of HDL Models, Kluwer
Academic Publishers, 2000.

SNUG Boston 2002 51 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

[8] Janick Bergeron, Writing Testbenches, Functional Verification of HDL Models, Kluwer
Academic Publishers, 2000, pg. xxi. (Verilog learning curve)

[9] Janick Bergeron, Writing Testbenches, Functional Verification of HDL Models, Kluwer
Academic Publishers, 2000, pg. 140. (Verilog portability exaggeration)

[10] Janick Bergeron, Writing Testbenches, Functional Verification of HDL Moddls, Kluwer
Academic Publishers, 2000, pg. 147. (flawed race avoidance guidelines)

[11] Lione Bening, and Harry Foster, Principles of Verifiable RTL Design, Second Edition,
Kluwer Academic Publishers, 2001

[12] Mark Warren, Technica Director, Verification Technology Group, Synopsys. Personal
communication.

[13] Paul Campbell, "A note on Verilog® assignments,” VeriFarm Inc web site. Downloaded
from www.verifarm.com/assign.shtml

[14] Steve Golson, personal communication.

[15] Steven Leung, "Subject: Re: How does one do a delay-line model in Verilog," posting on
comp.lang.verilog, 1993-02-12 (found on web site groups.google.com)

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and trainer
with 20 years of ASIC, FPGA and system design experience and 10 years of Verilog, synthesis
and methodology training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (V SG) since 1994, chaired
the VSG Behaviora Task Force, which was charged with proposing behavioral and synthesis
enhancements to the Verilog language. Mr. Cummings is also a member of the IEEE Verilog
Synthesis Interoperability Working Group and the Accellera SystemV erilog Working Group.

Mr. Cummings holds a BSEE from Brigham Y oung University and an M SEE from Oregon State
University.

Emall address:. cliffc@sunburst-design.com

An updated version of this paper can be downloaded from the web site:
www.sunburst-design.com/papers

(Data accurate as of October 30", 2002)

Revision 1.1 (September 2002) - What Changed?

Figure 4 at the end of section 2.1 was replaced with Figure 4 and Figure 5 to show different re-
triggered event scheduling caused by blocking assignments or continuous assignments (Figure 4)
and re-triggered event scheduling caused by nonblocking assignments (Figure 5). The two figures
show different ways that events can be re-triggered in the same simulation time step.

SNUG Boston 2002 52 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

Revision 1.2 (October 2002) - What Changed?

The delay model of Example 5 was corrected to show both y1 and y 2 outputs. The PDF was also
corrected to fix formatting problems that existed on page 5.

Revision 1.3 (December 2002) - What Changed?

Figure 28, Figure 29, Figure 30, Figure 31 and Table 9 were al corrected for the case where a
blocking assignment with RHS delay precedes a second assignment. In every case, the behavior is
equivalent to making the assgnmentsusing f or k-j oi n. A RHS #1 delay on a blocking
assignment between begin-end delays execution of the second assignment until #1 after the first
assignment has been executed. The correct behavior isto allow the second assignment to start
execution concurrently with the first assignment; hence, the need for the f or k-j oi n to replace
the begi n-end in these examples. This also means there are fewer race conditions than reported
in earlier version of this paper, so the table also had to be updated.

Added reference [3] to the references section.

Thereis actually another good reason to NOT use delays after blocking assignments as shown in
Example 24. If r st _n isasserted 0.5 ns after the posedge cl k and if theposedge cl k is
going to drive a1 to the b output, the reset will not be detected until the next posedge cl k.

My 1999 HDL CON paper[3] went into detail about adding delays to behavioral models. One
important guideline from that paper was to never put delays on the RHS of blocking assignments
because events can be missed. If you use sequential reset, you can probably get away with adding
the RHS delay, but thisis a bad habit to develop and some day you are going to use it wrong and
the debug effort will be painful. It is better not to use this coding style.

SNUG Boston 2002 53 Verilog Nonblocking Assignments
Rev 1.3 With Delays, Myths & Mysteries

