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ABSTRACT

High fanout nets, especially resets and gated clock nets, typically result in long synthesis
runtimes, and gives poor results. Fortunately, Design Compiler 2000.11 has added some
improvements that can help designers overcome these problems. This paper will first show some
of the problems caused by high fanout nets. Then, the new commands availablein DC 2000.11
for improving the synthesis results of high-fanout nets will be discussed. Last, synthesis results
on test circuits containing some large-fanout nets will be presented.
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1 I ntroduction

High fanout nets, especially resets and gated clock nets, typically result in long synthesis
runtimes, and gives poor results. Thisis due to the disconnect between the pre-layout
assumptions made by the static timing analyzer, and the actual post-layout circuit. This paper
will focus on the disconnect between pre and post-layout high-fanout nets, and strategies to
minimize this disconnect.

2 Requisite Knowledge

In order to understand Design Compiler’ s behavior when high-fanout nets are encountered and
synthesized, it is important to understand three basic concepts about design compiler. These are
Design Compiler’s:

» Constraint Priority;

* Timing Calculation Mechanics; and

* “Single-path” visibility

Each of these concepts will be briefly explained in the next 3 sections.
21  Design Compiler Constraint Priority

A Design Compiler user or library vendor can place several constraints on acircuit. These
constraints are numerous and sometimes contradictory. A detailed listing of all possible
constraints is beyond the scope of this paper, but can be found in [1]. For the purposes of
understanding Design Compiler when encountering high-fanout nets, we can view the constraints
and constraint priority that Design Compiler places on acircuit as:

1) Functional Correctness;

2) Design Rules (DRC)
i) max_transition;
ii) max_capacitance;
i) max_f anout ;

3) Setup Time ( max_del ay);

4) Others...

Since items 1) and 2) have a higher default priority than the rest, Design Compiler will often
spend an undue amount of time fixing DRC violations on a high fanout net, often at the expense
of circuit timing. Although the DRC priority can be overridden withset _i deal _net or
“conpi | e —no_desi gn_rul e”, DC may still spend agreat deal of time fixing any timing
violations that may occur as aresult of the large net capacitance and pin loading.
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2.2  Delay Calculation Review

In order to understand why high-fanout nets cause problems for Design Compiler, knowledge of
how cell and net delays are calculated is required. A brief, greatly smplified overview is
presented here. For a more thorough overview, please refer to [2]. The remaining discussion
will refer to Figure 1 below.

Figurel
Example Circuit for Delay Calculation Discussion

Cell Delay

Cell delay is affected by several parameters. Two of the parameters that relate to high-fanout
nets are:

a) The input transition time on an input pin; and
b) Thetotal load seen by the output pin. The total load is given by the equation:

total _load = Perceived _net _load +»_ pin_loads

In general, cell delay is directly related to these parameters. This means that the larger the input
transition time, the larger the delay of the cell. Also, the larger the total 1oad seen by the cell’s
output pin, the larger the delay of the cell.

It should be noted that the input transition time of a cell is equal to the output transition time of
the previous, or “upstream” cell in the path. The output transition time of a cell isalso afunction
of these two parameters, and will increase as input transition or output load increases.
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Net Delay

Net delay is defined as the time it takes a signal to propagate down the RC network formed by
the interconnect between logic gates. Although detailed RC timing information is not known
until after place and route, Design Compiler will estimate these numbers based on awire load
model. A wireload model is merely atable, which contains an estimated R and C value for
every net in the design, indexed by fanout.

After the R and C of the net is determined, the net delay is determined by using the following
formula:
net _delay = RxCxOC_,.; Where

1 forwor st _case_tree
OCxae = 1 for bal anced_tree;or
Net_fanout
0 forbest case_tree

wor st _case/ bal anced/ best _case tr ee attributes are part of the operating conditions
placed onthecur r ent _desi gn, and can be determined viareport_lib.

Results

With a basic understanding of Design Compiler’s delay calculation engine, it is easy to see why
high-fanout nets pose difficulties to Design Compiler. Referring to Figure 1, we can see that the
circuit, as shown, will have very poor timing and DRC performance. In fact, severa problems
will occur in the circuit above:

Gate U1:

a) Will haveavery large delay, due to the large capacitive |oading the output pin of UL.
Thisis because net “N1” is presenting alarge net capacitance, due to its high fanout.
And, each of the “OR” gatesis contributing an additive pin capacitance to the total
capacitance driven by U1.

b) Will haveanax_transitionor max_capaci t ance violation, dueto thelarge
overall capacitance presented on pin Z of Ul

c) Will haveavery large output transition, due to the large capacitance seen by pin Z.
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Net N1:

Since the net has a high fanout, the wire load model will present avery largeR and C
component to the delay calculation engine. However, Design Compiler will scalethese R
and C values based on the operating condition selected. In either case, Design Compiler will
choose an “incorrect” number for timing and DRC analysis.

a) Design Compiler might choose avery large, and overly pessimistic, delay component.
Thiswill happen if an operating condition withwor st _case_t r ee attributeis
selected. When this type of operating condition is used on adesign, the very large R and
C will be multiplied together. Thiswill result in a huge, and overly conservative, net
timing and capacitance.

b) Design Compiler might choose avery small, and overly optimistic, delay component.
Thiswill happen if an operating condition with bal anced_t r ee attribute is sel ected.
When this type of operating condition is used on adesign, the very large R and C will be
multiplied, and then divided by the fanout. When the fanout is high, the net delay can
begin to approach O.

CellsOR2 .. OR2000:

Thelarge transition time presented at the “B” pins of these devices will cause large delays on
these cells. It will also cause large transition times on the output of these cells, which will
continue to propagate down the timing path.

Clearly, if left unattended, a high-fanout net can wreak havoc on a circuit’ stiming and DRC
properties. Design Compiler will spend alot of time attempting to “fix” these violations.

2.3  “SinglePath” Vishbility of Design Compiler

Design Compiler uses a“cost function” in order to mathematically judge how its design
decisions affect the circuit. The details of this cost function can be found in [2]. It can be
summed up as:

all _violators critical _range

cost = gVI OI DRC + ;VI OI critical _ path

Basically, Design Compiler keeps track of all the DRC violations, and al of the timing
violations, and strives to eliminate the violations by getting the cost function to zero.
Algorithmically, Design Compiler accomplishes thistask by focusing on asingle path at atime,
making afix, and then re-calculating the cost function. A lower overall cost means that the
circuit has “improved”.
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Although this algorithm is useful for ‘generic’ designs, high-fanout nets often require a more
‘global’ view, in order to properly buffer the many paths contained by the net.

3 Design Considerationsfor High-fanout Nets

Typically, ahigh-fanout net will be buffered to reduce the overall load on the driving gate, and
decrease the transition time of the net. For signals with identical endpoint timing requirements,
such as clock nets and reset lines, a balanced buffer tree can be used, to reduce overall skew
between the edges.

Ul
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Figure 2
Balanced Buffer Tree

In general, a“physicaly-aware”, or backend tool, is used to insert clock and balance buffer trees.
Thisis because net lengths and net parasitics must be accurately known in order to properly
balance a buffer tree. These parameters cannot be determined until cells have been legally
placed, and detailed routing has been performed.

Thisis especially true of “edge-sensitive” nets, such as clock and reset nets. Inthiscase, itis
advisable to have Design Compiler leave the net alone, and allow the clock-tree insertion tool
to do the work.

On high-fanout nets with unegqual endpoint timing, a‘balanced tree’ approach is often an
efficient implementation. However, it might not be an optimal solution. In the case of Figure 2,
above, if we assume that the path through the OR gate has a tighter timing requirement than the
other paths, we can see how an ‘unbalanced’ tree could lead to a better result timing result, as
shown below:
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Figure3
Unbalanced Tree
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Clearly, “pulling” the timing critical path closer to the front of the tree will allow the OR gateto
receive the signal from U1 sooner than any cells further down the tree.

Given thisinformation, the most important decision a designer can make when a high-fanout net
isencountered is:

a) Should Design Compiler be allowed to “buffer up” the net? Or,
b) Should it be buffered and balanced in the back end toolchain?

Although thereis no “right” answer for al cases, the rest of this paper will present some general
rules that adesigner can follow to guide this decision.

4 Design Compiler and High-fanout Nets

Design Compiler’s handling of these nets, as well as the commands that apply to these nets, have
changed somewhat in the last few releases. Rather than introduce these commands, and then
explain them “up front”, they will be introduced as we explore Design Compiler’s behavior on
certain high-fanout nets.

Figure 4 below shows atest circuit, which will be used to show how Design Compiler behaves
when encountering one of the typical high-fanout nets that are common in most designs:
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Figure4
Circuit with 3 Types of High-Fanout Nets

The verilog code that was used to generate this testcase is shown in Appendix A. In particular,
there are 3 classes of high-fanout nets that will be looked at in this paper:

a) A clock net;
b) A reset net; and
c) A “genera purpose” high-fanout net.

Let’s explore some common myths, and devel op some rules, which can help us efficiently design
and synthesi ze circuits containing one of these classes of high-fanout nets.

5 Clock Nets

Thisis aperfect example of anet that Design Compiler should leave alone. These are also the
easiest high-fanout nets to handle, because Design Compiler is“smart enough” to know that this
net really should be left to atool with more specialized capabilities. Let’slook at some of the
common myths regarding clock nets:

Myth #1: If you're not careful, Design Compiler will “buffer up” the clock net;
Myth #2: set _dont _t ouch_net wor k must be applied to the clock, in order to ensure:
a) Design Compiler will not *buffer up’ a clock,

b) Design Compiler will not *buffer up’ agated clock,

Myth #3: Design Compiler will calculate a huge transition time for a heavily-loaded gated
clock, and al flip-flop clock->Q timing will be incorrect.
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Reality Aslong asyou haveissued “cr eat e_cl ock” onyour clock port, the latest
versions of Design Compiler will keep the clock net “buffer free”, eveniif itis
gated. Also, Design Compiler will keep the clock ideal (O transition time), even if
the clock passes through a heavily loaded gate.

Recommendation:
When synthesizing a circuit with a high-fanout clock net, Design Compiler will leavethe
clock net unbuffered aslong asthecr eat e_cl ock command has been issued on the clock

port. No other commands need to be issued prior to synthesis. Thisistrueregardless of the
presence or absence of clock gating.

A sample “old methodology” gated clock script is:

create_clock —p 10 find(port, clk)
set _dont _touch_network find(clock, clk)
i f (post_PR extract)
set propagated_cl ock find(cl ock, clk)
el se
set _clock_transition 0.1 find(clock, clk).

Now, this script can be ssmplified to::

create_clock —p 10 find(port, clk)

i f (post_PR extract)
set propagated_cl ock find(cl ock, clk)

Reasoning:

Design Compiler (as of version 2000.05) placesani deal _net attribute on the transitive
fanout of the clock port. This effectively takes the clock net(s) out of the DRC calculation,
preventing buffering of the clock to fix max_capaci tance andmax_transiti on
violations.

Also, athough the on-line documentation seems to indicate the contrary, thei deal _net
attribute also forces the delay calculator to use an “ideal” clock waveform, even when passing
through a heavily loaded clock gate!

Running the “simple” testcase above through 4 different libraries, two 0.18-micron libraries, and
2 different 0.13-micron libraries has shown this contention to be true on a variety of libraries.

To make sure that the simplicity of the testcase is not skewing the results, the test was re-run.
Thistime, | tested a Tensilica Xtensa™ processor, which was purposely configured to have a
high-fanout gated clock net. Thiswas accomplished by configuring alarge (64-place) register
fileand clock gating. Synthesis was performed on this “real-life’ circuit as well. The results of
these runs are shown in Table 1 below:
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# of buffers on clock

Circuit Library 2000.11 2000.05
0.18; Vendor “1” 0 0
Simple 0.18; Vendor “L” 0 0
Testcase 0.13; Vendor “N” 0 0
0.13; Vendor “A” 0 0

/.|
0.18; Vendor “1” 0 0
Xtensa 0.18; Vendor “L” 0 0
Pr ocessor 0.13; Vendor “N” 0 0
0.13; Vendor “A” 0 0
Tablel

Summary of Results for High-fanout Gated Clock
(Only creat e_cl ock Applied)

6 Reset Nets

Typically, areset is driven from a state machine, which ensures proper reset pulse duration,
deglitching, etc. Due to the nature of the reset signal, it isimportant that the reset signal be
asserted and deasserted in a controlled fashion, and nearly simultaneously for each flop. This
will ensure that

a) All flops come out of reset at the same time; and
b) Recovery/removal constraints on flop reset pins can be met.

Thisis another classic case of a high-fanout net which needs to be balanced by a back-end tool.
So, we must convey to Design Compiler the fact that the circuit used for synthesisis
“incomplete” (bufferswill be inserted later), and timing and/or DRC violations on the reset net
can beignored. Let’slook at some of the common pitfalls regarding reset nets:

Myth: Aslongas| apply set _dont _t ouch to my reset net, Design Compiler will
leaveit alone. | can then pass the netlist to the backend tools to do the rest.

Reality Eventhoughset _dont _t ouch will prevent Design Compiler from buffering
the reset net, the large DRC violation will still be in the cost function. Thiswill
result in two main disadvantages:

a) Design Compiler’s need to preserve functional correctness may causeit to
add inverters to the reset net
b) Compile time will increase dramatically, because Design Compiler will

attempt to fix alarge transition violation by “upsizing” cells prior to the
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high-fanout reset line and “downsizing” any flip-flops loading the reset
net; and

C) Given the priority of DRC violation over timing, and Design Compiler’s
critical-path-centric algorithm, the large DRC violation could result in the
rest of your circuit not being fully optimized.

Recommendation:

Regarding item @) above, to avoid inverters on the reset line, it will be necessary to impose a
coding guideline which requires designers to use the correct sense.

Unlike clock nets, other high-fanout nets do not automatically inherit thei deal _net or

dont _t ouch attribute automatically. So, these attributes must be applied manually. Although
the name of the reset net may not be obvious, finding it and identifying it before compile can
greatly reduce synthesis runtimes, and give a higher QOR (quality of results). A sample script
which shows proper reset constraining is shown below:

DESI GN_NAME=t st
read —f verilog DESI GN NAME + “.v”
l'i nk

create _clock —period 5.0 find(port, clk*)

set _dont _touch find(net, resetQ
set _ideal _net find(net, resetQ

conpi |l e

To show the benefits of using these commands, the simple testcase was compiled in three ways:

a) “Straight” compile, noset _dont touchorset i deal net

b) “old” methodology: (set _dont _t ouch (SDT) only); and

C) Recommended methodology: set _dont touch andset i deal net
(SDT/SIN)

The results of these runs are shown in Table 2 below:

Library Straight SDT Only SDT/SIN
0.18; Vendor “I” 47 0/187 min 0/39 min
0.18; Vendor “L” 53 0/201 o/47
0.13; Vendor “N” 49 0/162 0/35

Table?2

Number of buffers on reset net/Compile time
for 3 different methodol ogies
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Note that by telling Design Compiler to leave the net alone (viaset _dont _t ouch), andto
disregard DRC violations (viaset _i deal _net ), the fastest runtimes will occur.

Note: Inrare cases, applyingset _dont _touch andset _i deal _net will not
result in abuffer-freereset net. Thisisdueto STAR 114839, which has been
fixed in 2000.11-SP1 [3]

It should be noted that even though the reset net will now be “left alone” by Design Compiler,
the delay calculator will still show a large delay on the reset net! Thisis because even though
the net isset as“ideal”, it isimportant to remember that set_ideal _net only takes the net’s DRC
calculation out of the cost function; it does not change the timing calculation. This can be shown
by executing the command:

report _timng -net -fromfind(port, rst*)

on the circuit of Figure 4. The results are shown below:

Poi nt Fanout I ncr Pat h

i nput external del ay 1.00 1.00 r
rst N2 (in) 0. 00 1.00 r
rst N2 (net) 1 0. 00 1.00 r
U2303/ Y( NANDxxX) 67. 47 68.52 r
n6118 (net) 1100 0. 00 68.52 r
dout _reg/ RN ( DFFxxx) 0. 00 68.52 r
data arrival time 68. 52
(Path is unconstrai ned)

Note the extremely large delay on the NAND gate driving the reset line of the flip-flops. This
showsthat theset i deal net command did not have an affect on the delay calculator. In
the case of the reset net, thislarge delay did not cause a violation, since most libraries (including
the 6 used as ‘test cases' for this paper) do not place atiming constraint on the reset pin. If the
library was characterized such that there was a setup or hold requirement (with respect to clock)
on the reset pin, the large delay would cause atiming violation. The designer would then have to
modify the script used to constrain the reset net, as outlined in the next section.

7 “General Purpose” Nets

As mentioned in Section 3, “backend” tools that have knowledge of the location of the net driver
and receivers often handle large fanout nets better than Design Compiler. Prior to DC 2000.11, if
adesigner chose to fix a high fanout net with the layout tools, there was no way to tell Design
Compiler to completely ignore these nets.

Now that we have looked at the common special -purpose high fanout nets, let’ s explore
methodologies for getting “ general purpose” high fanout nets through synthesis. Keep in mind
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that there are no “hard and fast” rules that can be given regarding how large of a high fanout net
can be safely synthesized in Design Compiler. The following 'broad guideline’ isthe only
recommendation that can be made with some certainty:

High Fanout Net Guideline: nets with a fanout of thousands are strong candidates for ‘back
end layout. Conversely, it'salso safe to say that nets with afanout of afew hundred or less can
usually be handled by Design Compiler.

Results will vary greatly with vendor library, DRCs, timing constraints, and availability of high-
drive buffersin the synthesis libraries.

7.1 New/Improved High Fanout Net Commandsin DC 2000.11

DC 2000.11 and DC2001.08 have implemented several improvements for synthesis of nets with
ahigh fanout. The improvements come from two main factors; anew delay model for high
fanout nets, and improvements to the bal ance_buf f er command

Identifying High Fanout Nets

With DC 2000.11, identifying high fanout nets has become easier. To identify high fanout nets
prior to synthesis, you can ssmply issue the commands:

report _hi gh_fanout ; (DC 2000.11)
report _net fanout (DC 2000.11-SP1 and later)

Once extremely high-fanout nets have been identified, a decision can be made as to whether or
not to let Design Compiler buffer up the net.

High Fanout Net Delay M odel I mprovement

DC 2000.11 prevents the synthesis design rule and delay calculator from bogging down on high
fanout nets by “clamping” the fanout of the net during delay and DRC calculation. This means
that a net exceeding athreshold fanout value is assumed to have a smaller fanout during
delay/DRC calculations (the actual fanout of the net is unchanged). Setting the Design Compiler
variable hi gh_f anout _net _t hr eshol d controls thisthreshold value. For example,
issuing the command

hi gh_f anout _net _t hr eshol d=200

prior to compile causes Design Compiler to “pretend” that the net has a fanout of 200 during
delay and DRC calculations, regardiess of its actual fanout. Thiswill reduce any timing or DRC
violations calculated for the net, and can greatly speed up synthesistimes. (Pin capacitanceis
given by the hi gh_f anout _net _pi n_capaci t ance variable). Runtimeisalso improved
because the delay attributed to the net is only calculated once ([4], [5]). Thisvariable defaultsto
1000; in order to have DC revert to its “old” behavior, it should be set to zero.
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bal ance_buf f er Improvements

DC 2000.11 has added severa improvements to the bal ance_buf f er command, including:

a) “New and improved” algorithms

b) Can be executed on paths with timing violations (previously only executed on paths
with DRC violations)

C) —f or ce option allows bal ance_buf f er to be executed on any path

d) —pr ef er option allows user to indicate a preferred buffer to use

€) —hi er ar chy switch alowsbal ance_buf f er to cross hierarchy

f) Design Compiler now usesthe bal ance_buf f er algorithm during synthesis, for

high fanout nets
With these high fanout net improvements to Design Compiler, we can now explore some
methodologies for getting circuits that contain such nets through synthesis with less pain than in
previous versions.

7.2 High Fanout Nets Which Will Be Buffered by Design Compiler

Given the improvements made to Design Compiler, several truths regarding the synthesis of high
fanout nets have now turned into “myths’. Specifically:

Myth: Theconpi | e command
a) Does not build efficient buffer trees
b) Creates inefficient buffer chains
C) Cannot efficiently optimize high fanout nets for timing

Reality Given the improvements to high-fanout net optimization outlined in section 7.1
above, Design Compiler now does an efficient job of synthesizing high fanout
nets.

To show this, the circuit of Figure 4 was again synthesized, using 3 different methods:
a) With no constraints,
b) With alnsconstraint onthesync_set inputs; and
¢) Usingthebal ance_buffer command

The full script that was used to compile the design is shown below:

DESI GN_NAME=t st
CLK PERIOD = 2.5
read —f verilog DESI GN NAME + “.v”

[* Use full net fanout for delay cal cul ati on */
hi gh_fanout net threshold = 0

/[* Pass 1 — no constraints */
create_clock —period CLK PERI OD find(port, clk)
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wite —hier —o el ab.db
conpi |l e
wite —hier —o runl.db

[* Pass 2 — conpile w 1ns constraint */

renove_desi gn DESI GN_NAVE

read el ab. db

set _input_delay 1.5 —clock clk find(port, sync_set*)
conpi |l e

wite —hier —o run2.db

/* Pass 3 — Bal ance Buffer */

renove_desi gn DESI GN_NAVE

read el ab. db

set _input_delay 1.5 —clock clk find(port, sync_set*)
set _dont _touch find(net, sync_set)

set _ideal net find(net, sync_set)

conpi |l e

bal ance_buffer —net find(net, sync_set)

wite —hier —o run3.db

A comparison of the results are shown in Figure 5 below:
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Resultsof conpi | e on circuit of Figure4
(sync_set net)

The above figure shows that conpi | e now does ailmost as good of ajob on high-fanout nets as
bal ance buf f er doeds

7.3 High Fanout Nets Which Will Be Fixed in the Back End

For these nets, we would like Design Compiler to leave the net alone, but also to “ignore” the
effects of the large fanout, so that the back-end tools can balance the tree. Unfortunately, none of
the previously existing commands would allow Design Compiler to completely ignore the net.

Let’s briefly examine why:
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set _ideal _net <net> DC only ignores DRC violations on the net during synthesis.
Buffers can still be inserted on the net to fix timing violations

set _dont _touch <net> DC does not ignore DRC violations, and could upsize driving cells
and downsize receiving cellsin order to reduce a DRC violation caused by a high fanout net

set _dont _touch <net>/ set _ideal net <net> Mot effective for getting DC to
leave a net unbuffered (see Table 2). Unfortunately, runtime is still affected by constant
recalculation of path delay as gates at the end of the net change. Also, athough the

set i deal _net command causes Design Compiler to ignore DRC violations, the delay
calculator does not take into account the fact that the designer plans on fixing the net | ater.

To emphasize the effect of a“dont_touch” ed high fanout net on the delay calculator, the circuit

of Figure 4 was synthesized after applying the commands:
set _dont _touch find(net, sync_set)
set _ideal _net find(net, sync_set)

A portion of the resulting timing report is shown below:

Poi nt I ncr Pat h
clock clk (rise edge) 0. 00 0. 00
cl ock network delay (ideal) 0. 00 0. 00
i nput external del ay 1.00 1.00 r
sync_set2 (in) 0. 00 1.00 r
U6406/ Z ( ANDXxXxX) 59. 71 60. 71 r
U13112/ Z ( ND2XXXXX) 4. 96 65. 66 r
tnmp_reg[91] /D (FD2xxXxX) 0. 00 65. 66 r
data arrival time 65. 66
clock clk (rise edge) 2.50 2.50
cl ock network delay (ideal) 0. 00 2.50
tnp_reg[91] / CP ( FD2xxxX) 0. 00 2.50 r
library setup tine -0.42 2.08
data required tine 2.08
data required tine 2.08
data arrival time - 65. 66
sl ack (VI OLATED) -63. 59

Note the extremely large delay of the AND gate (U6406). Thisis adirect consequence of the
large capacitance presented by the high-fanout net. Besides causing timing constraints that are
impossible to meet, the large transition time caused by the high-fanout net will propagate to all
downstream paths in a more complex circuit.

In DC 2000.11 and later, the excessive runtime and incorrect timing reports can be further
improved by using the hi gh_f anout _net _t hr eshol d variable. A sample script that
shows how to accomplish thisresult on the ssimplesync_set net of Figure 4 is shown below:
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[* Tell DC not to buffer the net */
set _dont _touch find(net, sync_set)
set _ideal net find(net, sync_set)

[* Tell DCto “pretend” sync_set is not a */

/* high fanout net for tinmng & DRC cal cul ati on */
[* (net timing will only be cal cul ated once) */

hi gh_fanout net threshol d=100

conpi |l e

In the script above, by setting the hi gh_f anout _net _t hreshol d toanumber that isless
than the fanout of sync_set , the delay of the gate driving thesync_set net will be greatly
reduced. An added benefit isthat the delay of the net itself will only be calculated once. This
will further reduce DC runtime. The results of executing the above script file on the circuit of
Figure 4 is shown in the timing report excerpt below:

# A fanout nunber of 100 was used for high fanout net

conput ati ons.
Poi nt I ncr Pat h
clock clk (rise edge) 0. 00 0. 00
cl ock network delay (ideal) 0. 00 0. 00
i nput external del ay 1.00 1.00 r
sync_set2 (in) 0. 00 1.00 r
U6406/ Z ( ANDXxxxX) 2.17 # 3.17 r
U13112/ Z ( ND2XXXXX) 0.35 # 3.52 r
tnmp_reg[91] /D (FD2xxXxX) 0. 00 3.52 r
data arrival time 3.52
clock clk (rise edge) 2.50 2.50
cl ock network delay (ideal) 0. 00 2.50
tnp_reg[91] / CP ( FDxXxXxxX) 0. 00 2.50 r
library setup tine -0. 27 2.23
data required tine 2.23
data required tine 2.23
data arrival time -3.52
sl ack (VI OLATED) -1.29

Note that the timing of the AND gate is much lower. Although thereis still atiming violation, it
Is much more reasonable. Although the violation could be reduced further by setting the

high fanout_net_threshold lower, lowering the threshold too much could cause inaccurate timing
results elsewhere in the circuit. Thisis because an extremely low threshold would result in
severa hundred net delays being calculated using the threshold.
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7.4 Caveatson usingthehi gh_f anout _net _t hreshol d

Since the previous two sections mentioned the hi gh_f anout _net _t hreshol d, afew
points need to be made regarding its use:

1)

2)

3)

4)

5)

Thehi gh_fanout _net t hreshol disnot saved in .db! This meansthat
the variable needs to be set in the script file each time the .db fileis read
(Otherwise, the default of 1000 will be used)

Thehi gh_fanout _net _t hreshol d appliesto all netsabovethe
threshold value. Thereis currently no way to apply this value to some high-
fanout nets, and have DC use the actual fanout of others.

When calculating the delay of the driving cell a net whose fanout is larger than the
hi gh_fanout _net _t hreshol d, DC will nolonger calculate the total pin
loading of the driving cell. Instead, the pin loading will be the

hi gh_fanout _net _t hreshol d multiplied by the

hi gh_fanout net pi n_capacitance variable.

Thehi gh_f anout _net pi n_capaci t ance variableisnot saved in the
.db

Thehi gh_f anout _net _pi n_capaci t ance variable defaultsto 1.0. This
may not be avalid pin capacitance! It’s better to set this variable manually, based
on atypical library pin capacitance, as shown below:

get _attribute <libname>/<buffname>/<pi nName> capacit ance
/* libname = |ogical name of target l|ibrary
buf f nane
pi nNane
hi gh_fanout _net pi n_capacitance = dc_shel | _status

name of mediumdrive buffer
name of buffer’s input pin */

8

Avoiding Top-Level High Fanout Nets

It is best to avoid high-fanout nets wherever possible. Of course, avoiding a high fanout on clock
and reset netsis not possible. However, “general purpose” high-fanout nets can sometimes be

avoided.

In many cases, high fanout nets are aresult of integrating several blocks, which contain “medium
fanout nets’. In Figure 6 below, the enable line of each individual design does not have a
particularly high fanout. After integration, however, the fanout is considerably larger.
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High Fanout Net Caused by Integration

8.1 Load Budgeting

One way to prevent slow transition times on thet op_ena net isto employ load budgeting
during bottom-up compiles. In other words, when DesA — DesD are being compiled, we want to
limit the load on the inputs by settinganmax_capaci t ance (or max_f anout or
max_transition)ontheinputs. Thiswill force DC to “buffer up” higher-fanout inputs

during compile.

SNUG Boston 2001 21 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11



An example script for compiling the lower designs would look like:

/* Bottom|evel conpile script for DC */
/* WII force the enable pin to be buffered during conpile */

DRI VE_CELL = BUF1A
DRIVE PIN = A
DRI VE_CELL_LIB = tech

DRV_CELL = DRIVE CELL_LIB + “/” + DRIVE_CELL + “/” + DRIVE_PIN
/* Budget the input capacitance of each pin */
get _attribute find(pin, DRV_CELL) nmax_capacitance
max_i nput _cap = dc_shel | status
i f (max_input_cap == {}}
max_input _cap = get _attribute DRIVE CELL LIB default_ nax_capacitance
max_i nput _cap = max_i nput_cap/ 4

i ncl ude ot her Constraints. scr

set _driving cell -lib cell DRIVE CELL -pin DRIVE PIN\
-library DRIVE CELL LIB all _inputs() - clk

set _max_capaci tance max_input_cap all _inputs() — clk

conpil e

The above script will result in cells U1-U4 having a buffer tree on their enable input, thereby
presenting alesser load to the finite state machine (FSM) generatingt op_ena

After top-level integration, cl ean_buf f er _tr ee andthenbal ance_buf f er could be
applied to net enabl e_t op if necessary, in order to achieve a more desirable balanced tree.

8.2 Avoiding High Fanout Netsin a Configurable Processor

Most processors have several high-fanout signals, including instruction decodes, pipeline status,
and, of course, clock and reset [6]. One challenge faced by Tensilicawhen designing the Xtensa
configurable processor isthat each user can configure the processor differently, which means that
the fanout of these netsis not a constant. This can be further explained by noting the block
diagram of the Xtensa processor in Figure 7 below:
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Tensilica Xtensa Block Diagram

As can be seen from Figure 7 above, besides any existing high fanout signalsin the base Xtensa
core, an Xtensa licensee has the opportunity to increase the fanout of the processor control/status
signals, or the clock and reset line, by configuring additional blocks into the processor, including
(but not limited to):

)] A larger register file;

i) An |EEE compatible FPU (and its associated registers)

i) A Quad-MAC DSP with 40-bit accumulate (and its associated registers)

iv) On-chip Address and Data Breakpoint register (for JTAG_ICE functionality)

V) User defined processor registers and register files (any number, up to 128 bits wide)

Since Xtensa users have a great deal of control over the instruction-set architecture (ISA), and the
processor is synthesizable to any ASIC library, identifying and buffering high fanout nets prior to
synthesisis not possible. Instead, Tensilica provides customers with a*“bottom up”, make-based
synthesis scripting environment. These scripts use load budgeting and splitting in order to ensure
there is no problemsin top-level synthesis.

9 Conclusions and Recommendations

| believe that the following conclusions can be drawn based on the experiments conducted for
this paper:

Clock nets:
Clock netswill pass ‘cleanly’ through Design Compiler, aslong ascr eat e_cl ock hasbeen
issued. Thisistrue whether or not
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a) The clock is gated.
b) set_dont_touch_network has been issued

Reset nets:

Reset netswill pass‘cleanly’ through Design Compiler, aslong asset i deal net and
set _dont _t ouch have been applied to the net prior to compile. To avoid inverters on the
reset net, keep the ‘sense’ of the reset line consistent for all modules.

Other high-fanout nets:
If the signals traversing the net only have simple ‘ clock-cycle’ timing constraints, DC will do a
reasonable job of buffering and balancing the net.

If a low-skew, balanced net is desired, the net should be passed ‘clean’ through synthesis, with
aslittle impact on synthesis runtime as possible. To do this, issue the commands:

[* Tell DC not to buffer the net */
set _dont touch find(net, <net nane>)

set high fanout net threshold 200 /* O sone ot her |ow nunber */

/* next line is optional, because high fanout net threshold
can nake the high-fanout net a “non-probl enf, DRC w se

set _ideal net <net nane>

*/

conpi |l e

10 Enhancementsand Areasfor Further Study

Admittedly, the test circuit used for analysis throughout this paper was not very complex.
Testing these new high fanout net commands on a more robust circuit would be beneficial. Also,
no methodology yet exists for applying the hi gh_f anout _net _t hr eshol d toindividual
nets. Testing the conclusions drawn above on a more complex circuit would be beneficial.

A necessary enhancement for arobust high fanout net methodol ogy would be to make the

hi gh_fanout _net _t hreshol d an attribute that could be applied on an individual net.
Thisis because alikely scenario is that some nets that are to be fixed with clock-tree-like
methods, and they should “inherit” the hi gh_f anout _net _t hr eshol d, so that pre- and
post- clock tree insertion timing values are closer. Other nets (which are not candidates for back-
end buffer tree insertion) would not want to inherit this value, since DC will be responsible for
buffering the entire net fanout.
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12 Appendix

Verilog listing for circuit of Figure 4

modul e tst(clk, clk G d.in, s r1, s r2, rst N1, rst_ N2,
dout) ;

paraneter size = 1100;
input d_in, rst N1, rst N2, s rl, s r2, clk G clk;

out put dout;
reg dout;

reg [size-1:1] tnp;
wire Gclk, rst N, s r;

i nteger i;

assign Gclk =clk & clk_G
assign rst_N =rst_NL & rst_N2;
assign s r =srl &s r2;

al ways @ posedge G cl k or negedge rst_N) begin
if (!'rst_N) begin
dout <= 0;
tnp <= 0;

end el se begin
dout <= tnp[size-1] | s_r;

for (i=size-1; i>1; i=i-1)
tnp[i] <= tnp[i-1] | s_r;

tmp[1] <=d_in | s_r;
end
end

endnodul e
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