

High Fanout Without High Stress: Synthesis and
Optimization of High-fanout Nets Using Design Compiler

2000.11

Rick Furtner

Tensilica, Inc

rfurtner@tensilica.com

ABSTRACT

High fanout nets, especially resets and gated clock nets, typically result in long synthesis
runtimes, and gives poor results. Fortunately, Design Compiler 2000.11 has added some
improvements that can help designers overcome these problems. This paper will first show some
of the problems caused by high fanout nets. Then, the new commands available in DC 2000.11
for improving the synthesis results of high-fanout nets will be discussed. Last, synthesis results
on test circuits containing some large-fanout nets will be presented.

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

2

Table of Contents

Table of Contents .. 2
Table of Figures .. 2
1 Introduction... 3
2 Requisite Knowledge .. 3

2.1 Design Compiler Constraint Priority... 3
2.2 Delay Calculation Review... 4
2.3 “Single Path” Visibility of Design Compiler... 6

3 Design Considerations for High-fanout Nets .. 7
4 Design Compiler and High-fanout Nets .. 8
5 Clock Nets... 9
6 Reset Nets ... 11
7 “General Purpose” Nets .. 13

7.1 New/Improved High Fanout Net Commands in DC 2000.11.. 14
7.2 High Fanout Nets Which Will Be Buffered by Design Compiler ... 15
7.3 High Fanout Nets Which Will Be Fixed in the Back End ... 17
7.4 Caveats on using the high_fanout_net_threshold ... 20

8 Avoiding Top-Level High Fanout Nets... 20
8.1 Load Budgeting... 21
8.2 Avoiding High Fanout Nets in a Configurable Processor ... 22

9 Conclusions and Recommendations.. 23
10 Enhancements and Areas for Further Study .. 24
11 Acknowledgements ... 25
12 References... 25
12 Appendix... 26

Table of Figures

Figure 1 ... 4
Example Circuit for Delay Calculation Discussion... 4
Figure 2 ... 7
Balanced Buffer Tree .. 7
Figure 3 ... 8
Unbalanced Tree ... 8
Figure 4 ... 9
Circuit with 3 Types of High-Fanout Nets .. 9
Figure 5 ... 17
Results of compile on circuit of Figure 4... 17
(sync_set net)... 17
Figure 6 ... 21
High Fanout Net Caused by Integration.. 21
Figure 7 ... 23
Tensilica Xtensa Block Diagram... 23

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

3

1 Introduction

High fanout nets, especially resets and gated clock nets, typically result in long synthesis
runtimes, and gives poor results. This is due to the disconnect between the pre-layout
assumptions made by the static timing analyzer, and the actual post-layout circuit. This paper
will focus on the disconnect between pre and post-layout high-fanout nets, and strategies to
minimize this disconnect.

2 Requisite Knowledge
In order to understand Design Compiler’s behavior when high-fanout nets are encountered and
synthesized, it is important to understand three basic concepts about design compiler. These are
Design Compiler’s:

• Constraint Priority;
• Timing Calculation Mechanics; and
• “Single-path” visibility

Each of these concepts will be briefly explained in the next 3 sections.

2.1 Design Compiler Constraint Priority

A Design Compiler user or library vendor can place several constraints on a circuit. These
constraints are numerous and sometimes contradictory. A detailed listing of all possible
constraints is beyond the scope of this paper, but can be found in [1]. For the purposes of
understanding Design Compiler when encountering high-fanout nets, we can view the constraints
and constraint priority that Design Compiler places on a circuit as:

1) Functional Correctness;
2) Design Rules (DRC)

i) max_transition;
ii) max_capacitance;
iii) max_fanout;

3) Setup Time (max_delay);
4) Others…

Since items 1) and 2) have a higher default priority than the rest, Design Compiler will often
spend an undue amount of time fixing DRC violations on a high fanout net, often at the expense
of circuit timing. Although the DRC priority can be overridden with set_ideal_net or
“compile –no_design_rule”, DC may still spend a great deal of time fixing any timing
violations that may occur as a result of the large net capacitance and pin loading.

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

4

2.2 Delay Calculation Review

In order to understand why high-fanout nets cause problems for Design Compiler, knowledge of
how cell and net delays are calculated is required. A brief, greatly simplified overview is
presented here. For a more thorough overview, please refer to [2]. The remaining discussion
will refer to Figure 1 below.

Figure 1

Example Circuit for Delay Calculation Discussion

Cell Delay

Cell delay is affected by several parameters. Two of the parameters that relate to high-fanout
nets are:

a) The input transition time on an input pin; and
b) The total load seen by the output pin. The total load is given by the equation:

�+= loadspinloadnetPerceivedloadtotal ____

In general, cell delay is directly related to these parameters. This means that the larger the input
transition time, the larger the delay of the cell. Also, the larger the total load seen by the cell’s
output pin, the larger the delay of the cell.

It should be noted that the input transition time of a cell is equal to the output transition time of
the previous, or “upstream” cell in the path. The output transition time of a cell is also a function
of these two parameters, and will increase as input transition or output load increases.

A
B

Z

U1

OR2

B
N1

OR3

B

OR2000

B

A
B

Z

U1

OR2

B
N1

OR3

B

OR2000

B

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

5

Net Delay

Net delay is defined as the time it takes a signal to propagate down the RC network formed by
the interconnect between logic gates. Although detailed RC timing information is not known
until after place and route, Design Compiler will estimate these numbers based on a wire load
model. A wire load model is merely a table, which contains an estimated R and C value for
every net in the design, indexed by fanout.

After the R and C of the net is determined, the net delay is determined by using the following
formula:

scaleOCCRdelaynet ××=_ ; where

 1 for worst_case_tree

OCscale =
fanoutetN _

1 for balanced_tree; or

 0 for best_case_tree

worst_case/balanced/best_case tree attributes are part of the operating conditions
placed on the current_design, and can be determined via report_lib.

Results

With a basic understanding of Design Compiler’s delay calculation engine, it is easy to see why
high-fanout nets pose difficulties to Design Compiler. Referring to Figure 1, we can see that the
circuit, as shown, will have very poor timing and DRC performance. In fact, several problems
will occur in the circuit above:

Gate U1:

a) Will have a very large delay, due to the large capacitive loading the output pin of U1.

This is because net “N1” is presenting a large net capacitance, due to its high fanout.
And, each of the “OR” gates is contributing an additive pin capacitance to the total
capacitance driven by U1.

b) Will have a max_transition or max_capacitance violation, due to the large
overall capacitance presented on pin Z of U1

c) Will have a very large output transition, due to the large capacitance seen by pin Z.

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

6

Net N1:

Since the net has a high fanout, the wire load model will present a very large R and C
component to the delay calculation engine. However, Design Compiler will scale these R
and C values based on the operating condition selected. In either case, Design Compiler will
choose an “incorrect” number for timing and DRC analysis:

a) Design Compiler might choose a very large, and overly pessimistic, delay component.

This will happen if an operating condition with worst_case_tree attribute is
selected. When this type of operating condition is used on a design, the very large R and
C will be multiplied together. This will result in a huge, and overly conservative, net
timing and capacitance.

b) Design Compiler might choose a very small, and overly optimistic, delay component.

This will happen if an operating condition with balanced_tree attribute is selected.
When this type of operating condition is used on a design, the very large R and C will be
multiplied, and then divided by the fanout. When the fanout is high, the net delay can
begin to approach 0.

Cells OR2 .. OR2000:

The large transition time presented at the “B” pins of these devices will cause large delays on
these cells. It will also cause large transition times on the output of these cells, which will
continue to propagate down the timing path.

Clearly, if left unattended, a high-fanout net can wreak havoc on a circuit’s timing and DRC
properties. Design Compiler will spend a lot of time attempting to “fix” these violations.

2.3 “Single Path” Visibility of Design Compiler

Design Compiler uses a “cost function” in order to mathematically judge how its design
decisions affect the circuit. The details of this cost function can be found in [2]. It can be
summed up as:

�� +=
rangecritical

pathcritical

violatorsall

DRC violviolt
_

0
_

_

0

cos

Basically, Design Compiler keeps track of all the DRC violations, and all of the timing
violations, and strives to eliminate the violations by getting the cost function to zero.
Algorithmically, Design Compiler accomplishes this task by focusing on a single path at a time,
making a fix, and then re-calculating the cost function. A lower overall cost means that the
circuit has “improved”.

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

7

Although this algorithm is useful for ‘generic’ designs, high-fanout nets often require a more
‘global’ view, in order to properly buffer the many paths contained by the net.

3 Design Considerations for High-fanout Nets

Typically, a high-fanout net will be buffered to reduce the overall load on the driving gate, and
decrease the transition time of the net. For signals with identical endpoint timing requirements,
such as clock nets and reset lines, a balanced buffer tree can be used, to reduce overall skew
between the edges.

Figure 2

Balanced Buffer Tree

In general, a “physically-aware”, or backend tool, is used to insert clock and balance buffer trees.
This is because net lengths and net parasitics must be accurately known in order to properly
balance a buffer tree. These parameters cannot be determined until cells have been legally
placed, and detailed routing has been performed.

This is especially true of “edge-sensitive” nets, such as clock and reset nets. In this case, it is
advisable to have Design Compiler leave the net alone, and allow the clock-tree insertion tool
to do the work.

On high-fanout nets with unequal endpoint timing, a ‘balanced tree’ approach is often an
efficient implementation. However, it might not be an optimal solution. In the case of Figure 2,
above, if we assume that the path through the OR gate has a tighter timing requirement than the
other paths, we can see how an ‘unbalanced’ tree could lead to a better result timing result, as
shown below:

Z

U1

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

8

Figure 3

Unbalanced Tree

Clearly, “pulling” the timing critical path closer to the front of the tree will allow the OR gate to
receive the signal from U1 sooner than any cells further down the tree.

Given this information, the most important decision a designer can make when a high-fanout net
is encountered is:

a) Should Design Compiler be allowed to “buffer up” the net? Or,
b) Should it be buffered and balanced in the back end toolchain?

Although there is no “right” answer for all cases, the rest of this paper will present some general
rules that a designer can follow to guide this decision.

4 Design Compiler and High-fanout Nets

Design Compiler’s handling of these nets, as well as the commands that apply to these nets, have
changed somewhat in the last few releases. Rather than introduce these commands, and then
explain them “up front”, they will be introduced as we explore Design Compiler’s behavior on
certain high-fanout nets.

Figure 4 below shows a test circuit, which will be used to show how Design Compiler behaves
when encountering one of the typical high-fanout nets that are common in most designs:

Z

U1

U2

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

9

Figure 4
Circuit with 3 Types of High-Fanout Nets

The verilog code that was used to generate this testcase is shown in Appendix A. In particular,
there are 3 classes of high-fanout nets that will be looked at in this paper:

a) A clock net;
b) A reset net; and
c) A “general purpose” high-fanout net.

Let’s explore some common myths, and develop some rules, which can help us efficiently design
and synthesize circuits containing one of these classes of high-fanout nets.

5 Clock Nets

This is a perfect example of a net that Design Compiler should leave alone. These are also the
easiest high-fanout nets to handle, because Design Compiler is “smart enough” to know that this
net really should be left to a tool with more specialized capabilities. Let’s look at some of the
common myths regarding clock nets:

Myth #1: If you’re not careful, Design Compiler will “buffer up” the clock net;
Myth #2: set_dont_touch_network must be applied to the clock, in order to ensure:

a) Design Compiler will not ‘buffer up’ a clock,
b) Design Compiler will not ‘buffer up’ a gated clock,

Myth #3: Design Compiler will calculate a huge transition time for a heavily-loaded gated

clock, and all flip-flop clock->Q timing will be incorrect.

CK

D Q

CK

D Q

CK

D Q

CLK

RST2_n

D_IN

sync_set1

U1 U2 U1100

CLK_g

RST1_n

sync_set2

sync_set

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

10

Reality As long as you have issued “create_clock” on your clock port, the latest
versions of Design Compiler will keep the clock net “buffer free”, even if it is
gated. Also, Design Compiler will keep the clock ideal (0 transition time), even if
the clock passes through a heavily loaded gate.

Recommendation:

When synthesizing a circuit with a high-fanout clock net, Design Compiler will leave the
clock net unbuffered as long as the create_clock command has been issued on the clock
port. No other commands need to be issued prior to synthesis. This is true regardless of the
presence or absence of clock gating.

A sample “old methodology” gated clock script is:

create_clock –p 10 find(port, clk)
set_dont_touch_network find(clock, clk)
if (post_PR_extract)

set_propagated_clock find(clock, clk)
else

set_clock_transition 0.1 find(clock, clk).

Now, this script can be simplified to::

create_clock –p 10 find(port, clk)

if (post_PR_extract)
set_propagated_clock find(clock, clk)

Reasoning:

Design Compiler (as of version 2000.05) places an ideal_net attribute on the transitive
fanout of the clock port. This effectively takes the clock net(s) out of the DRC calculation,
preventing buffering of the clock to fix max_capacitance and max_transition
violations.

Also, although the on-line documentation seems to indicate the contrary, the ideal_net
attribute also forces the delay calculator to use an “ideal” clock waveform, even when passing
through a heavily loaded clock gate!

Running the “simple” testcase above through 4 different libraries, two 0.18-micron libraries, and
2 different 0.13-micron libraries has shown this contention to be true on a variety of libraries.

To make sure that the simplicity of the testcase is not skewing the results, the test was re-run.
This time, I tested a Tensilica XtensaTM processor, which was purposely configured to have a
high-fanout gated clock net. This was accomplished by configuring a large (64-place) register
file and clock gating. Synthesis was performed on this “real-life” circuit as well. The results of
these runs are shown in Table 1 below:

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

11

 # of buffers on clock

Circuit

Library

2000.11

2000.05

 0.18; Vendor “I” 0 0

Simple 0.18; Vendor “L” 0 0
Testcase 0.13; Vendor “N” 0 0

 0.13; Vendor “A” 0 0
 0.18; Vendor “I” 0 0

Xtensa 0.18; Vendor “L” 0 0
Processor 0.13; Vendor “N” 0 0

 0.13; Vendor “A” 0 0

Table 1
Summary of Results for High-fanout Gated Clock

(Only create_clock Applied)

6 Reset Nets

Typically, a reset is driven from a state machine, which ensures proper reset pulse duration,
deglitching, etc. Due to the nature of the reset signal, it is important that the reset signal be
asserted and deasserted in a controlled fashion, and nearly simultaneously for each flop. This
will ensure that

a) All flops come out of reset at the same time; and
b) Recovery/removal constraints on flop reset pins can be met.

This is another classic case of a high-fanout net which needs to be balanced by a back-end tool.
So, we must convey to Design Compiler the fact that the circuit used for synthesis is
“incomplete” (buffers will be inserted later), and timing and/or DRC violations on the reset net
can be ignored. Let’s look at some of the common pitfalls regarding reset nets:

Myth: As long as I apply set_dont_touch to my reset net, Design Compiler will

leave it alone. I can then pass the netlist to the backend tools to do the rest.

Reality Even though set_dont_touch will prevent Design Compiler from buffering

the reset net, the large DRC violation will still be in the cost function. This will
result in two main disadvantages:
a) Design Compiler’s need to preserve functional correctness may cause it to

add inverters to the reset net
b) Compile time will increase dramatically, because Design Compiler will

attempt to fix a large transition violation by “upsizing” cells prior to the

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

12

high-fanout reset line and “downsizing” any flip-flops loading the reset
net; and

c) Given the priority of DRC violation over timing, and Design Compiler’s
critical-path-centric algorithm, the large DRC violation could result in the
rest of your circuit not being fully optimized.

Recommendation:

Regarding item a) above, to avoid inverters on the reset line, it will be necessary to impose a
coding guideline which requires designers to use the correct sense.

Unlike clock nets, other high-fanout nets do not automatically inherit the ideal_net or
dont_touch attribute automatically. So, these attributes must be applied manually. Although
the name of the reset net may not be obvious, finding it and identifying it before compile can
greatly reduce synthesis runtimes, and give a higher QOR (quality of results). A sample script
which shows proper reset constraining is shown below:

DESIGN_NAME=tst
read –f verilog DESIGN_NAME + “.v”
link

create_clock –period 5.0 find(port, clk*)

set_dont_touch find(net, resetG)
set_ideal_net find(net, resetG)

compile
. . .

To show the benefits of using these commands, the simple testcase was compiled in three ways:

a) “Straight” compile, no set_dont_touch or set_ideal_net
b) “old” methodology: (set_dont_touch (SDT) only); and
c) Recommended methodology: set_dont_touch and set_ideal_net

(SDT/SIN)

The results of these runs are shown in Table 2 below:

Library Straight SDT Only SDT/SIN
0.18; Vendor “I” 47 0/187 min 0/39 min
0.18; Vendor “L” 53 0/201 0/47
0.13; Vendor “N” 49 0/162 0/35

Table 2

Number of buffers on reset net/Compile time
for 3 different methodologies

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

13

Note that by telling Design Compiler to leave the net alone (via set_dont_touch), and to
disregard DRC violations (via set_ideal_net), the fastest runtimes will occur.

Note: In rare cases, applying set_dont_touch and set_ideal_net will not

result in a buffer-free reset net. This is due to STAR 114839, which has been
fixed in 2000.11-SP1 [3]

It should be noted that even though the reset net will now be “left alone” by Design Compiler,
the delay calculator will still show a large delay on the reset net! This is because even though
the net is set as “ideal”, it is important to remember that set_ideal_net only takes the net’s DRC
calculation out of the cost function; it does not change the timing calculation. This can be shown
by executing the command:

report_timing -net -from find(port, rst*)

on the circuit of Figure 4. The results are shown below:

Point Fanout Incr Path

input external delay 1.00 1.00 r
rst_N2 (in) 0.00 1.00 r
rst_N2 (net) 1 0.00 1.00 r
U2303/Y(NANDxxx) 67.47 68.52 r
n6118 (net) 1100 0.00 68.52 r
dout_reg/RN (DFFxxx) 0.00 68.52 r
data arrival time 68.52

(Path is unconstrained)

Note the extremely large delay on the NAND gate driving the reset line of the flip-flops. This
shows that the set_ideal_net command did not have an affect on the delay calculator. In
the case of the reset net, this large delay did not cause a violation, since most libraries (including
the 6 used as ‘test cases’ for this paper) do not place a timing constraint on the reset pin. If the
library was characterized such that there was a setup or hold requirement (with respect to clock)
on the reset pin, the large delay would cause a timing violation. The designer would then have to
modify the script used to constrain the reset net, as outlined in the next section.

7 “General Purpose” Nets
As mentioned in Section 3, “backend” tools that have knowledge of the location of the net driver
and receivers often handle large fanout nets better than Design Compiler. Prior to DC 2000.11, if
a designer chose to fix a high fanout net with the layout tools, there was no way to tell Design
Compiler to completely ignore these nets.

Now that we have looked at the common special-purpose high fanout nets, let’s explore
methodologies for getting “general purpose” high fanout nets through synthesis. Keep in mind

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

14

that there are no “hard and fast” rules that can be given regarding how large of a high fanout net
can be safely synthesized in Design Compiler. The following ’broad guideline’ is the only
recommendation that can be made with some certainty:

High Fanout Net Guideline: nets with a fanout of thousands are strong candidates for ‘back
end’ layout. Conversely, it’s also safe to say that nets with a fanout of a few hundred or less can
usually be handled by Design Compiler.

Results will vary greatly with vendor library, DRCs, timing constraints, and availability of high-
drive buffers in the synthesis libraries.

7.1 New/Improved High Fanout Net Commands in DC 2000.11

DC 2000.11 and DC2001.08 have implemented several improvements for synthesis of nets with
a high fanout. The improvements come from two main factors; a new delay model for high
fanout nets, and improvements to the balance_buffer command

Identifying High Fanout Nets

With DC 2000.11, identifying high fanout nets has become easier. To identify high fanout nets
prior to synthesis, you can simply issue the commands:

 report_high_fanout; (DC 2000.11)

report_net_fanout (DC 2000.11-SP1 and later)

Once extremely high-fanout nets have been identified, a decision can be made as to whether or
not to let Design Compiler buffer up the net.

High Fanout Net Delay Model Improvement

DC 2000.11 prevents the synthesis design rule and delay calculator from bogging down on high
fanout nets by “clamping” the fanout of the net during delay and DRC calculation. This means
that a net exceeding a threshold fanout value is assumed to have a smaller fanout during
delay/DRC calculations (the actual fanout of the net is unchanged). Setting the Design Compiler
variable high_fanout_net_threshold controls this threshold value. For example,
issuing the command

high_fanout_net_threshold=200

prior to compile causes Design Compiler to “pretend” that the net has a fanout of 200 during
delay and DRC calculations, regardless of its actual fanout. This will reduce any timing or DRC
violations calculated for the net, and can greatly speed up synthesis times. (Pin capacitance is
given by the high_fanout_net_pin_capacitance variable). Runtime is also improved
because the delay attributed to the net is only calculated once ([4], [5]). This variable defaults to
1000; in order to have DC revert to its “old” behavior, it should be set to zero.

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

15

balance_buffer Improvements

DC 2000.11 has added several improvements to the balance_buffer command, including:

a) “New and improved” algorithms
b) Can be executed on paths with timing violations (previously only executed on paths

with DRC violations)
c) –force option allows balance_buffer to be executed on any path
d) –prefer option allows user to indicate a preferred buffer to use
e) –hierarchy switch allows balance_buffer to cross hierarchy
f) Design Compiler now uses the balance_buffer algorithm during synthesis, for

high fanout nets

With these high fanout net improvements to Design Compiler, we can now explore some
methodologies for getting circuits that contain such nets through synthesis with less pain than in
previous versions.

7.2 High Fanout Nets Which Will Be Buffered by Design Compiler

Given the improvements made to Design Compiler, several truths regarding the synthesis of high
fanout nets have now turned into “myths”. Specifically:

Myth: The compile command

a) Does not build efficient buffer trees
b) Creates inefficient buffer chains
c) Cannot efficiently optimize high fanout nets for timing

Reality Given the improvements to high-fanout net optimization outlined in section 7.1

above, Design Compiler now does an efficient job of synthesizing high fanout
nets.

To show this, the circuit of Figure 4 was again synthesized, using 3 different methods:

a) With no constraints;
b) With a 1ns constraint on the sync_set inputs; and
c) Using the balance_buffer command

The full script that was used to compile the design is shown below:

DESIGN_NAME=tst
CLK_PERIOD = 2.5
read –f verilog DESIGN_NAME + “.v”

/* Use full net fanout for delay calculation */
high_fanout_net_threshold = 0

/* Pass 1 – no constraints */
create_clock –period CLK_PERIOD find(port, clk)

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

16

write –hier –o elab.db
compile
write –hier –o run1.db

/* Pass 2 – compile w/ 1ns constraint */
remove_design DESIGN_NAME
read elab.db
set_input_delay 1.5 –clock clk find(port, sync_set*)
compile
write –hier –o run2.db

/* Pass 3 – Balance Buffer */
remove_design DESIGN_NAME
read elab.db
set_input_delay 1.5 –clock clk find(port, sync_set*)
set_dont_touch find(net, sync_set)
set_ideal_net find(net, sync_set)
compile
balance_buffer –net find(net, sync_set)
write –hier –o run3.db

A comparison of the results are shown in Figure 5 below:

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

17

Figure 5

Results of compile on circuit of Figure 4
(sync_set net)

The above figure shows that compile now does almost as good of a job on high-fanout nets as
balance_buffer does!

7.3 High Fanout Nets Which Will Be Fixed in the Back End

For these nets, we would like Design Compiler to leave the net alone, but also to “ignore” the
effects of the large fanout, so that the back-end tools can balance the tree. Unfortunately, none of
the previously existing commands would allow Design Compiler to completely ignore the net.
Let’s briefly examine why:

1 2 3 4 5 6 7 8

Path Delay (ns)

of

 P
at

hs

100

200

300

compile (no constraints)

1 2 3 4 5 6 7 8

of Buffers in Path

of

 P
at

hs

100

200

300

9 10

Path Delay (ns)

of

 P
at

hs

1 2 3 4 5 6 7 8

of Buffers in Path

of

 P
at

hs

9 10

1000

500

1 2 3 4 5 6 7 8 9 10

1000

500

1 2 3 4 5 6 7 8

of Buffers in Path

200

400

600

9 10

800

Path Delay (ns)

of

 P
at

hs

1 2 3 4 5 6 7 8 9 10

1000

500

of

 P
at

hs

compile (1 ns constraint)

balance_buffer (1 ns constraint)

1 2 3 4 5 6 7 8

Path Delay (ns)

of

 P
at

hs

100

200

300

compile (no constraints)

1 2 3 4 5 6 7 8

of Buffers in Path

of

 P
at

hs

100

200

300

9 10

Path Delay (ns)

of

 P
at

hs

1 2 3 4 5 6 7 8

of Buffers in Path

of

 P
at

hs

9 10

1000

500

1 2 3 4 5 6 7 8 9 10

1000

500

1 2 3 4 5 6 7 8

of Buffers in Path

200

400

600

9 10

800

Path Delay (ns)

of

 P
at

hs

1 2 3 4 5 6 7 8 9 10

1000

500

of

 P
at

hs

compile (1 ns constraint)

balance_buffer (1 ns constraint)

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

18

set_ideal_net <net> DC only ignores DRC violations on the net during synthesis.
Buffers can still be inserted on the net to fix timing violations

set_dont_touch <net> DC does not ignore DRC violations, and could upsize driving cells
and downsize receiving cells in order to reduce a DRC violation caused by a high fanout net

set_dont_touch <net>/ set_ideal_net <net> Most effective for getting DC to
leave a net unbuffered (see Table 2). Unfortunately, runtime is still affected by constant
recalculation of path delay as gates at the end of the net change. Also, although the
set_ideal_net command causes Design Compiler to ignore DRC violations, the delay
calculator does not take into account the fact that the designer plans on fixing the net later.

To emphasize the effect of a “dont_touch”ed high fanout net on the delay calculator, the circuit
of Figure 4 was synthesized after applying the commands:

set_dont_touch find(net, sync_set)
set_ideal_net find(net, sync_set)

A portion of the resulting timing report is shown below:

Point Incr Path

clock clk (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
input external delay 1.00 1.00 r
sync_set2 (in) 0.00 1.00 r
U6406/Z (ANDxxxx) 59.71 60.71 r
U13112/Z (ND2xxxxx) 4.96 65.66 r
tmp_reg[91]/D (FD2xxxx) 0.00 65.66 r
data arrival time 65.66

clock clk (rise edge) 2.50 2.50
clock network delay (ideal) 0.00 2.50
tmp_reg[91]/CP (FD2xxxx) 0.00 2.50 r
library setup time -0.42 2.08
data required time 2.08

data required time 2.08
data arrival time -65.66

slack (VIOLATED) -63.59

Note the extremely large delay of the AND gate (U6406). This is a direct consequence of the
large capacitance presented by the high-fanout net. Besides causing timing constraints that are
impossible to meet, the large transition time caused by the high-fanout net will propagate to all
downstream paths in a more complex circuit.

In DC 2000.11 and later, the excessive runtime and incorrect timing reports can be further
improved by using the high_fanout_net_threshold variable. A sample script that
shows how to accomplish this result on the simple sync_set net of Figure 4 is shown below:

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

19

/* Tell DC not to buffer the net */
set_dont_touch find(net, sync_set)
set_ideal_net find(net, sync_set)

/* Tell DC to “pretend” sync_set is not a */
/* high fanout net for timing & DRC calculation */
/* (net timing will only be calculated once) */

high_fanout_net_threshold=100

compile
. . .

In the script above, by setting the high_fanout_net_threshold to a number that is less
than the fanout of sync_set, the delay of the gate driving the sync_set net will be greatly
reduced. An added benefit is that the delay of the net itself will only be calculated once. This
will further reduce DC runtime. The results of executing the above script file on the circuit of
Figure 4 is shown in the timing report excerpt below:

A fanout number of 100 was used for high fanout net
computations.
...

Point Incr Path

clock clk (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
input external delay 1.00 1.00 r
sync_set2 (in) 0.00 1.00 r
U6406/Z (ANDxxxx) 2.17 # 3.17 r
U13112/Z (ND2xxxxx) 0.35 # 3.52 r
tmp_reg[91]/D (FD2xxxx) 0.00 3.52 r
data arrival time 3.52

clock clk (rise edge) 2.50 2.50
clock network delay (ideal) 0.00 2.50
tmp_reg[91]/CP (FDxxxxx) 0.00 2.50 r
library setup time -0.27 2.23
data required time 2.23

data required time 2.23
data arrival time -3.52

slack (VIOLATED) -1.29

Note that the timing of the AND gate is much lower. Although there is still a timing violation, it
is much more reasonable. Although the violation could be reduced further by setting the
high_fanout_net_threshold lower, lowering the threshold too much could cause inaccurate timing
results elsewhere in the circuit. This is because an extremely low threshold would result in
several hundred net delays being calculated using the threshold.

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

20

7.4 Caveats on using the high_fanout_net_threshold

Since the previous two sections mentioned the high_fanout_net_threshold, a few
points need to be made regarding its use:

1) The high_fanout_net_threshold is not saved in .db! This means that
the variable needs to be set in the script file each time the .db file is read
(Otherwise, the default of 1000 will be used)

2) The high_fanout_net_threshold applies to all nets above the
threshold value. There is currently no way to apply this value to some high-
fanout nets, and have DC use the actual fanout of others.

3) When calculating the delay of the driving cell a net whose fanout is larger than the
high_fanout_net_threshold, DC will no longer calculate the total pin
loading of the driving cell. Instead, the pin loading will be the
high_fanout_net_threshold multiplied by the
high_fanout_net_pin_capacitance variable.

4) The high_fanout_net_pin_capacitance variable is not saved in the
.db

5) The high_fanout_net_pin_capacitance variable defaults to 1.0. This
may not be a valid pin capacitance! It’s better to set this variable manually, based
on a typical library pin capacitance, as shown below:

get_attribute <libname>/<buffname>/<pinName> capacitance

/* libname = logical name of target library
buffname = name of medium-drive buffer
pinName = name of buffer’s input pin */

high_fanout_net_pin_capacitance = dc_shell_status

8 Avoiding Top-Level High Fanout Nets

It is best to avoid high-fanout nets wherever possible. Of course, avoiding a high fanout on clock
and reset nets is not possible. However, “general purpose” high-fanout nets can sometimes be
avoided.

In many cases, high fanout nets are a result of integrating several blocks, which contain “medium
fanout nets”. In Figure 6 below, the enable line of each individual design does not have a
particularly high fanout. After integration, however, the fanout is considerably larger.

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

21

Fanout = 800

DesC

U3

enable

Fanout = 800

DesD

U4

enable

Fanout = 800

DesA

U1

enable

Fanout = 800

DesB

U2

enable

Top

top_ena
fsm

Fanout = 800

DesC

U3

enable

Fanout = 800

DesD

U4

enable

Fanout = 800

DesA

U1

enable

Fanout = 800

DesB

U2

enable

Top

top_ena
fsm

Figure 6

High Fanout Net Caused by Integration

8.1 Load Budgeting

One way to prevent slow transition times on the top_ena net is to employ load budgeting
during bottom-up compiles. In other words, when DesA – DesD are being compiled, we want to
limit the load on the inputs by setting a max_capacitance (or max_fanout or
max_transition) on the inputs. This will force DC to “buffer up” higher-fanout inputs
during compile.

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

22

An example script for compiling the lower designs would look like:

/* Bottom-level compile script for DC */
/* Will force the enable pin to be buffered during compile */

DRIVE_CELL = BUF1A
DRIVE_PIN = A
DRIVE_CELL_LIB = tech

DRV_CELL = DRIVE_CELL_LIB + “/” + DRIVE_CELL + “/” + DRIVE_PIN

/* Budget the input capacitance of each pin */
get_attribute find(pin, DRV_CELL) max_capacitance
max_input_cap = dc_shell_status
if (max_input_cap == {}}

max_input_cap = get_attribute DRIVE_CELL_LIB default_max_capacitance

max_input_cap = max_input_cap/4

include otherConstraints.scr
set_driving_cell -lib_cell DRIVE_CELL -pin DRIVE_PIN \

-library DRIVE_CELL_LIB all_inputs() - clk
set_max_capacitance max_input_cap all_inputs() – clk

compile

. . .

The above script will result in cells U1-U4 having a buffer tree on their enable input, thereby
presenting a lesser load to the finite state machine (FSM) generating top_ena

After top-level integration, clean_buffer_tree and then balance_buffer could be
applied to net enable_top if necessary, in order to achieve a more desirable balanced tree.

8.2 Avoiding High Fanout Nets in a Configurable Processor

Most processors have several high-fanout signals, including instruction decodes, pipeline status,
and, of course, clock and reset [6]. One challenge faced by Tensilica when designing the Xtensa
configurable processor is that each user can configure the processor differently, which means that
the fanout of these nets is not a constant. This can be further explained by noting the block
diagram of the Xtensa processor in Figure 7 below:

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

23

Figure 7

Tensilica Xtensa Block Diagram

As can be seen from Figure 7 above, besides any existing high fanout signals in the base Xtensa
core, an Xtensa licensee has the opportunity to increase the fanout of the processor control/status
signals, or the clock and reset line, by configuring additional blocks into the processor, including
(but not limited to):

i) A larger register file;
ii) An IEEE compatible FPU (and its associated registers)
iii) A Quad-MAC DSP with 40-bit accumulate (and its associated registers)
iv) On-chip Address and Data Breakpoint register (for JTAG_ICE functionality)
v) User defined processor registers and register files (any number, up to 128 bits wide)

Since Xtensa users have a great deal of control over the instruction-set architecture (ISA), and the
processor is synthesizable to any ASIC library, identifying and buffering high fanout nets prior to
synthesis is not possible. Instead, Tensilica provides customers with a “bottom up”, make-based
synthesis scripting environment. These scripts use load budgeting and splitting in order to ensure
there is no problems in top-level synthesis.

9 Conclusions and Recommendations

I believe that the following conclusions can be drawn based on the experiments conducted for
this paper:

Clock nets:
Clock nets will pass ‘cleanly’ through Design Compiler, as long as create_clock has been
issued. This is true whether or not

Optional+
Configurable

Optional

Configurable

Base

Extensible

Interrupt Control

Data Address Watch 0 to n

Instruction Address Watch 0 to n

TRACE Port
JTAG TAP

On Chip Debug

Exception Designer-
Defined

Opcodes

Data

Instruction

Data
Address

Pr
oc

es
so

r C
on

tr
ol

s

Align and Decode

ALU
Register File

M
em

or
y

Pr
ot

ec
tio

n Processor InterfaceWrite
Buffer

Data Memory
or Cache & Tags

Instruction Mem
or Cache/Tags
Branch Logic/

Instruction Fetch

Address

FPU

Vectra DSP

MAC 16
MUL 16
MAC 32Timers 0 to n

Designer-
Defined

Registers

Optional+
Configurable

Optional

Configurable

Base

Extensible

Interrupt Control

Data Address Watch 0 to n

Instruction Address Watch 0 to n

TRACE Port
JTAG TAP

On Chip Debug

TRACE Port
JTAG TAP

On Chip Debug

Exception Designer-
Defined

Opcodes

Data

Instruction

Data
Address

Pr
oc

es
so

r C
on

tr
ol

s

Align and Decode

ALU
Register File

M
em

or
y

Pr
ot

ec
tio

n Processor InterfaceWrite
Buffer

Data Memory
or Cache & Tags

Instruction Mem
or Cache/Tags
Branch Logic/

Instruction Fetch

Address

FPU

Vectra DSP

MAC 16
MUL 16
MAC 32Timers 0 to n

Designer-
Defined

Registers

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

24

a) The clock is gated.
b) set_dont_touch_network has been issued

Reset nets:
Reset nets will pass ‘cleanly’ through Design Compiler, as long as set_ideal_net and
set_dont_touch have been applied to the net prior to compile. To avoid inverters on the
reset net, keep the ‘sense’ of the reset line consistent for all modules.

Other high-fanout nets:
If the signals traversing the net only have simple ‘clock-cycle’ timing constraints, DC will do a
reasonable job of buffering and balancing the net.

If a low-skew, balanced net is desired, the net should be passed ‘clean’ through synthesis, with
as little impact on synthesis runtime as possible. To do this, issue the commands:
:

/* Tell DC not to buffer the net */
set_dont_touch find(net, <net_name>)

set high_fanout_net_threshold 200 /* Or some other low number */

/* next line is optional, because high_fanout_net_threshold
can make the high-fanout net a “non-problem”, DRC-wise

set_ideal_net <net_name>
*/

compile
. . .

10 Enhancements and Areas for Further Study
Admittedly, the test circuit used for analysis throughout this paper was not very complex.
Testing these new high fanout net commands on a more robust circuit would be beneficial. Also,
no methodology yet exists for applying the high_fanout_net_threshold to individual
nets. Testing the conclusions drawn above on a more complex circuit would be beneficial.

A necessary enhancement for a robust high fanout net methodology would be to make the
high_fanout_net_threshold an attribute that could be applied on an individual net.
This is because a likely scenario is that some nets that are to be fixed with clock-tree-like
methods, and they should “inherit” the high_fanout_net_threshold, so that pre- and
post- clock tree insertion timing values are closer. Other nets (which are not candidates for back-
end buffer tree insertion) would not want to inherit this value, since DC will be responsible for
buffering the entire net fanout.

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

25

11 Acknowledgements
Many thanks to Paul Stein of the Department of Defense, for taking the time to review this paper
and provide constructive feedback. Also, thanks to JoAnne Wegener for her infinite patience!

12 References

[1] Conistis, Furtner, & Islam, "Static Timing Analysis in Design Compiler and PrimeTime";

BSNUG 2000 Tutorial
[2] Design Compiler User’s Guide
[3] Synthesis-749.html, “Preventing Buffers on RESET Line”, Solv-Net Article
[4] Synthesis-835.html, “Reducing Runtime Impact of High-fanout Nets in Design

Compiler”, Solv-Net Article
[5] Synthesis-780.html; “Commands for high fanout nets”, Solv-Net Article
[6] Computer Architecture : A Quantitative Approach, by John Hennessy and David

Patterson

SNUG Boston 2001 Synthesis and Optimization of High-fanout Nets
Using Design Compiler 2000.11

26

12 Appendix
Verilog listing for circuit of Figure 4

module tst(clk, clk_G, d_in, s_r1, s_r2, rst_N1, rst_N2,

dout);

parameter size = 1100;

input d_in, rst_N1, rst_N2, s_r1, s_r2, clk_G, clk;

output dout;
reg dout;

reg [size-1:1] tmp;
wire G_clk, rst_N, s_r;
integer i;

assign G_clk = clk & clk_G;
assign rst_N = rst_N1 & rst_N2;
assign s_r = s_r1 & s_r2;

always @(posedge G_clk or negedge rst_N) begin

if (!rst_N) begin
dout <= 0;
tmp <= 0;

end else begin
dout <= tmp[size-1] | s_r;

for (i=size-1; i>1; i=i-1)
tmp[i] <= tmp[i-1] | s_r;

tmp[1] <= d_in | s_r;

end

end

endmodule

