TECHNOLOGY FOR A CHANGING WORLD

JENNIC LTD
FURNIVAL STREET
SHEFFIELD
S14QT

UNITED KINGDOM

TELEPHONE: +44 (0) 114 281 2655
FACSIMILE: +44 (0) 114 281 2951

E MAIL: |nfo@_1enn_|c.c0m
WEB: Www.jennic.com

Title: FishTail Toolset Evaluation

Project: SoC

Document Ref: RP001039

Date: Wednesday, 28 July 2004

Author : Danny Traynor

Distribution:

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 1 of 15 Confidential

25 February 2005 © Jennic 2004

Contents

I S oAV 1] o] I o TS (0] Y SRR 2
2. EXECULIVE SUMMIAIY ..oiii i e eieiiieeeiiie i s e e e e e e e e e e e e ettt s s s s e e e e e e e e e e eeestestan e aeseeeeaeeeeeeeessnnnens 3
T | 1 oo [8 Yo T] o R OO PP PPPPPPPPP 4
4, General UsSability ISSUEBS ...uuuiii i e e s s e e e e e e e e ee e e aeere e as 5
LT =T Lo [o o =T 1 o o T 3 I 6
6. ldentification Of DeSIgN MOUESuuuuiiiiii i e e e e e e e eeearernea 7
7. False Paths and Multi CycCle PathS ... 10
S T @0 o Vo 1T 1= o] o =P RER 11
. AP PEND DX e e e ara 12
1S 00 O U 1 o b U I o 1 o PP 12
1o I o Vol B Eo R w0 IR Yo o 13
1o IR T w0 Tod B E ST (0 o IS o 1 o) U 14
9.4. Focus INput CONSLraiNtS Fileccoviiiiiiiiiiiies e e ee e 15
9.5, FOCUS Pragma Fileuuuuiiiii i s e e e e e e e e ee e s 15
1. REVISION HISTORY
Version | Date Notes
0.1 12" July 2004 First preliminary release
0.2 28" July 2004 Updated for first release
FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 2 of 15 Confidential

25 February 2005 © Jennic 2004

2. EXECUTIVE SUMMARY

The Focus product from FishTail Design Automation is intended to allow designers to quickly
and easily generate golden timing constraints for their designs, at a very early stage in the
design flow.

The tool primarily targets the exceptions to single-cycle Static Timing Analysis (STA). These are
false paths and multi-cycle paths, and can present problems in reaching timing closure on a
design: these timing issues often appear late in the design cycle, and require manual
intervention to trace paths, identify and check the paths are false, and modify the STA constraint
files to reflect the false paths. This adds extra effort and uncertainty late in the design cycle, and
can impact tape-out. In addition, undetected timing exceptions can result in chips that are over
optimized, and therefore consume more area and power than is absolutely necessary.

The evaluation showed that the tools could quickly yield a surprisingly large number of false and
multi-cycle paths for a design. The tool also generates a list of assertions to allow the
exceptions to be verified using a formal property checking tool, but this was not done as Jennic
do not have a property checker. In our test case, meeting setup timing did not present any
problems and so these exceptions would have little or no impact on timing or area. However, in
large, fast designs, these exceptions could result in a smaller implementation area, or even
make the difference between a block being implementable or not.

The tool could identify modes of operation where only one clock was propagated to the flops in
the design. However, | was concerned that using the mode constraints directly could be risky,
and would recommend that they be inspected carefully to ensure that they do not cause
unchecked paths in STA.

Some issues were found with reading RTL (due to a known bug), which made it impossible to
use the tool on one block.

A few minor usability issues were identified, and suggestions made to ease the use of the tool.

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 3 of 15 Confidential

25 February 2005 © Jennic 2004

3. INTRODUCTION

Within Jennic, we have significant experience of STA and timing constraints creation, and have
in the past seen issues both with constraint omissions and with STA tool performance on poorly
constrained designs. Therefore, a tool that could quickly yield high quality constraints is of
interest. Of particular interest is the identification of design modes and creation of constraints to
configure the design in the various modes: our current STA tooling is unable to cope with
multiple clocks driving a single endpoint, and hence a significant amount of effort is expended in
identifying the configuration of the design to ensure no multiple driven clock endpoints.

FishTail make the following claims for their Focus tool:
= Push-button generation of false and multicycle paths.
» Accepts RTL descriptions in standard Verilog format.
= Qutputs golden-timing constraints in standard SDC format.
= Analyzes multi-million gate designs in a matter of hours.
= Applicable for both flat and hierarchical design flows.

= Automatically identifies multiple design modes and generates separate constraint files for
each mode.

» Provides verification of false-path definitions by generating assertions for import into
formal property verification tools.

= Ability to filter SDC output so that only exceptions for timing critical-endpoints are imported
into downstream tools.

The tool was run on a small (120k instances) Jennic chip. This design was built on a 0.18um
process and had a low clock frequency (20MHz maximum). The RTL code used for the trial had
previously been used for the physical implementation and subsequent tape-out of the design,
and there were almost no maximum (setup) timing issues: therefore the multi-cycle and false
paths were slightly less critical in this instance. However, the design was heavily optimised for
low power operation, and so had complex power down modes, clock multiplexing and clock
gating, which made the mode identification of significant interest.

This document overviews the tasks performed using the FishTail tools, and provides feedback
on what went well and what could be improved.

Version 1.7.4 of the Focus tool was used, running on a Sun Unix (Solaris) platform.

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 4 of 15 Confidential

25 February 2005 © Jennic 2004

4. GENERAL USABILITY ISSUES

Starting the tool is easy — type focus at the Unix Command prompt. A quirk of the tool is that all
information appears to be output on the standard error, rather than on the standard output.
Therefore, when running the tool in batch mode and creating a log file, it is necessary to use

“>&” or “|&” to redirect the output to the log file rather than “>” or “|”, for example:

UNI X% focus focus.tcl | & tee focus.|og

The tool documentation is reasonably good, although | found one aspect particularly confusing.
The “Focus User’s Guide “ guides the user through the stages of reading a design, defining
clocks and boundary timing, analysing modes of operation, and generating timing exceptions,
and it appears to be relatively straightforward. However, the documentation for the “write_gtc”
command to generate the timing exceptions is very poorly explained, especially regarding the
“design_script” parameter. This is perhaps the least intuitive aspect of using the tool, as the flow
appears to be to read in the design and constraints in order to identify the design modes, and
then the design script provided to write_gtc causes everything to be read in again in order to
generate the exceptions. In the end, | only found out the contents of the write_gtc design script
by looking in the examples area in the FishTail installation area. Once the contents of the
design script are understood, driving the tool becomes reasonably straightforward.

One possible enhancement, which | believe would greatly improve the ease with which Focus
could be integrated into a design flow, is to add a “read_sdc” command. Currently, the engineer
must define the clocks and boundary constraints for the tool, but these are usually available as
synthesis constraints at the stage when Focus would be run in a design flow. If it were possible
to simply read the synthesis constraints directly into Focus, then the flow for running Focus could
be made seamless: create synthesis constraints as usual; read constraints into Focus to create
exceptions; append exceptions to constraints; run synthesis as usual. | was able to use the
synthesis constraints for one block, but in order to do so | had to comment out several
commands, including set_max_area, set_clock_latency, set_clock_uncertainty, etc. If the tool
simply read and ignored these constraints the usability would be much improved.

| would also like the manual pages to be supplied in PDF format, along with the tool
documentation: an indepth discussion of the commands in a browsable format would be
invaluable for any engineer trying to drive the tool.

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 5 of 15 Confidential

25 February 2005 © Jennic 2004

5. READING VERILOG RTL

To read the block level verilog RTL, the following code was used:

read_design \
verilog_files.txt \
-desi gn_name ${ BLOCK_NAME} \
-incdir /soc/FlI SHTAI L_TRI AL/ ${ BLOCK_NAME} / 20040405/ RTL \
-v {/soc/ Fl SHTAI L_TRI AL/ MEMORI ES/ RAM RAMB192WB2B. v \
/ soc/ FI SHTAI L_TRI AL/ MEMORI ES/ ROM ROML2288WB2B. v}

The file “verilog_files.txt” contained a list of all verilog RTL files for the entire chip, and the top-
level module was picked out using the ${BLOCK_NAME} variable. Verilog models were
included for the RAM and ROM macro blocks. This worked without issue for four of the five
blocks in the trial device.

However, two aspects of the RTL for one of the trial blocks caused the Focus tool to fail. In the
block in question, the tool objected to the following items:

nodul e ran2p (w _data, w _addr,w _cl k,w _en,rd_data, rd_addr,rd_en,rd_cl k);
/1 override as required in parent nodul e
par amet er DATA W= 0,

ADDR_W = 0,

DEPTH = O;

i nput [DATA W 1:0] w_data;

In this instance, the definition of the parameters (which are overridden in the instantiation of the
module) caused the tool to define the first input as “DATA_WI-1:0], and the tool gave the
warnings "Negative range bound found" and "The module 'ram2p’ will be ignored".

The second issue was a problem with multi-dimensional arrays of register wires:
reg [3:0] symerr [15:0];

In this case, the tool appeared to be quite happy with various operations on the “sym_err” array,
for example, the following:

assign new sumO = {2'h0, symdiff[0]} + symerr[O0];

However, when it was fed into a sub-block with parameterised data widths, the tool gave an
error message and then crashed:
nmod_min_val #(4,4) nod_nmin_val 0 (
. hun0(4’ do),
. numl (4’ d1),

.val O(symerr[0]),
.val 1(symerr[1]),

In this instance, the default parameter widths were set to 8, and were then overridden with 4 in
the instantiation, but the RTL was nevertheless valid and had successfully been used for
synthesis followed by physical implementation and then tape-out. Applications support
confirmed that this is a known bug, which had not yet been fixed in the latest (version 1.8)
release of the tool.

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 6 of 15 Confidential

25 February 2005 © Jennic 2004

6. IDENTIFICATION OF DESIGN MODES

One major point of interest for the Focus tool was the identification of the modes of operation for
a design, and creation of SDC files to configure the design into those modes.

The Focus User’s Guide document contains the following discussion on design modes:

“During clock propagation Focus identifies if there are any clock sinks on a design
that multiple clock sources propagate to. When this situation arises it is reflective of
a design having different modes of operation, where depending on the mode a
design is in, different clocks propagate to the same clock sinks.

Focus automatically identifies the different modes on a chip such that in any given
mode only one clock source reaches a clock sink. The modes for a design and their
associated conditions (the values on nets that are required to put a design into a
given mode) can be queried using the report_modes command.”

In order to check this, one small block in the trial design was used. In BLOCK_2, there are
approximately 100 flops, all driven by a net called “muxed_clk”, which is created as follows:

always @cl k or backup_cl k_32k or use_backup_cl ocks or test_rc_bp or test_en)
begi n
if (test_en & test_rc_bp)
muxed_cl k = backup_cl k_32k
el se if (use_backup_cl ocks)
nmuxed_cl k = backup_cl k_32k
el se
nmuxed_cl k = clk;
end

The use of pragmas is required (in addition to the clock and boundary constraints) in order to
allow Focus to identify modes. For the example above, the pragmas were as follows:

set _pragma ft_cl ock_source clk
set _pragma ft_cl ock_source backup_cl k_32k

set _pragma ft_node_source test_en
set _pragma ft_npde_source use_backup_cl ocks

With this in place, Focus then identified modes of operation of the circuit, and produced
set_case_analysis commands in the constraints files to configure the circuit in one of two
modes, where either “clk” or “backup_clk_32k” were propagated to the flops. Focus was able to
configure two modes of operation either with or without the “ft_mode_source” pragmas, so long
as the “ft_clock_source” pragmas were set. The resulting constraints files for the two modes
were as follows:

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 7 of 15 Confidential

25 February 2005 © Jennic 2004

Mode 1 (propagates BACKUP_CLK 32K to flops):
set case_anal ysi s_sequenti al _propagati on al ways

Case statenents for design node 1
set _case_analysis 1 [get_pins -leaf -of [get_nets use_backup_cl ocks]]

iteration 1

C ock-to-d ock exceptions
set _false_path -from[get_clocks CLK VIRT] \
-to [get_clocks BACKUP_CLK 32K]
set_false path -from [get clocks BACKUP _CLK 32K] \
-to [get_clocks CLK VIRT]

Mode 2 (propagates CLK to flops):

set case_anal ysi s_sequenti al _propagati on al ways

Case statenents for design node 2

set _case_anal ysis 0 [get_pins -leaf -of [get_nets use_backup_cl ocks]]
set _case_analysis 1 [get_pins -leaf -of [get_nets test_rc_bp]]
set_case_anal ysis 0 [get_pins -leaf -of [get_nets test_en]]

iteration 1

Exceptions for endpoint sys ctrl_16mrst

set _false_path -from[get_clocks CLK VIRT] \
-to [get_ports { sys_ctrl_16mrst }]

Exceptions for endpoint anper v reg pd

set _false path -from[get_ports { test _rdio_pd }] \
-to [get_ports { anper_v_reg_pd }]

Exceptions for endpoint rf_v_reg_pd

set _false_path -from[get_ports { test_rdio_pd }] \
-to [get_ports { rf_v_reg_pd }]

Exceptions for endpoint syn v _reg pd

set _false_path -from[get_ports { test_rdio_pd }] \
-to [get_ports { syn v reg pd }]

Exceptions for endpoint vco_v_reg_pd

set _false_path -from[get_ports { test_rdio_pd }] \
-to [get_ports { vco_v_reg_pd }]

Exceptions for endpoint en xtal 33

set _false path -from[get_ports { test _xtal pd }] \
-to [get_ports { en_xtal 33 J]

C ock-to-d ock exceptions

set _false_path -from[get_clocks CLK VIRT] \
-to [get_cl ocks CLK]

set _false_path -from[get_clocks CLK] \
-to [get_cl ocks CLK VIRT]

Several issues arise from a closer inspection of these constraints:

1. | am nervous about using “set case_analysis_sequential_propagation always” in STA, as

it causes constant values (set using “set_case_analysis”) to be propagated through
sequential cells when set. | believe it can be difficult to convince oneself that a design
will not have unchecked paths when using this switch, especially in glue logic which

could fall between STA modes, and so in general | recommend we avoid using it within

Jennic. This is, of course, purely a personal opinion.

2. Inmode 2, the second set_case_analysis (1 on “test_rc_bp”) is not actually required in
order to propagate CLK to the flops when “test_en” is low. It is included either with or
without “test_rc_bp” being defined using an “ft_mode_source” pragma. Furthermore,

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 8 of 15 Confidential

25 February 2005 © Jennic 2004

mode 2 could also be enabled by “test_rc_bp” low, or both signals low.

For STA, | need to be sure that all logic paths are checked. From the above two modes,
any logic which is enabled by (!test_en & ltest_rc_bp & luse_backup_clocks) or (test_en
& luse_backup_clocks) will be disabled in both modes and therefore unchecked in STA
using these constraints files. It is not clear whether Focus, when defining modes,
ensures that all logic is enabled in at least one mode — this needs to be clarified.

3. In both modes, Focus has created false paths between the propagated clock and
CLK_VIRT. This means that an STA run using these modes will leave all boundary
constraints unchecked. This block used virtual clocks to define boundary constraints
(this is a reliable way to overcome inconsistencies in the interpretation of clock latencies
between Magma and PrimeTime). In creating these false paths, Focus has caused all
the virtual clock boundary timings to be disabled for this block, and this is incorrect.

When | used the pragmas, | found that running the “write_assertions” command caused Focus to
crash. As we do not have the property checker required to verify the assertions, | did not
investigate this further.

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 9 of 15 Confidential

25 February 2005 © Jennic 2004

7. FALSE PATHS AND MULTI CYCLE PATHS

The main command to identify false and multi-cycle paths in Focus is “write_gtc”. When this
was run, false and multi-cycle paths were identified. The command was run as follows:

set sequential _control O

wite gtc \
-design_script setup.tcl \
-output_file ${BLOCK _NAME} fp.gtc

The sequential_control variable controls whether false paths (0) or multi-cycle paths (1) are
identified: two runs of write_gtc command are required to create both sets of exceptions.

The statistics from the test runs carried out are as follows:

Clock # # False # Multi-Cycle | Run
Block Complexity | Sources | Modes Paths Paths Time
BLOCK_1 45K insts 5 2 974 /1042 180/ 182 7 Hrs
5.5k flops
BLOCK_ 2 2.2K insts 2 2 2/8 8/8 3 Mins
110 flops
BLOCK_3 1.6k insts 1 None 0 0 1 Min
0 flops
3 RAMs

In the most complex block, an astonishingly large number of false and multi-cycle paths were
identified. There were no setup timing issues in the design in question, and so these results
make little or no difference to timing. However, in high frequency designs, and in larger designs
where interconnects are much longer, these false and multi-cycle paths could make the
difference between a design being implementable or not.

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 10 of 15 Confidential

25 February 2005 © Jennic 2004

8. CONCLUSIONS

The FishTail Focus tool provides a means to easily create some of the more arduous and error
prone parts of STA constraints. The creation of false and multi-cycle paths becomes a very
quick process. | am still slightly concerned about the need to verify the constraints — having
false exceptions could mean a design is under-constrained, which would be a disaster in STA —
but the use of a formal property checker should give confidence in this.

The mode identification feature in Focus could be very useful indeed: it correctly identified those
nets that need to be controlled in order to correctly propagate one clock to the flops in the
design. However, based upon my findings | would be very concerned at using the mode
constraints directly, due to the risk of having unchecked paths in STA. Instead | would use the
information from the mode constraints, along with input from the circuit designers, to understand
the modes of operation of the circuit and create a constraints suite, which correctly constrains
the design.

The evaluation showed that the tools could quickly yield a surprisingly large number of false and
multi-cycle paths for a design. In our test case, meeting setup timing did not present any
problems and so these exceptions would have little or no impact on timing or area. However, in
large, fast designs, these exceptions could result in a smaller implementation area, or even
make the difference between a block being implementable or not.

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 11 of 15 Confidential

25 February 2005 © Jennic 2004

9. APPENDIX

9.1. Unix Run Script
#!/bin/csh
-
COMMERCI AL | N CONFI DENCE Copyright Jennic Ltd @ 2004
#
Jennic Ltd. Sheffield, Furnival Street,
Sheffield S1 4QT.
Tel: +44 144 2812655 e-muil:info@ ennic.co.uk
-
Project Name : FISHTAI L_TRI AL
Filenane . go_focus.csh
Oiginator . Danny Traynor
Function : Top-Level FishTail Focus Invocation script
He o m e o

nodul e | oad perl
nodul e | oad fishtai

cd /soc/ FI SHTAI L_TRI AL/ BLOCK_2/ 20040405/ FI SHTAI L

HHHHHHRHH R RS R R R R R R R R R R R R R R R R
Environnent Variables ...

HUHHHHRH R HH SRR R R R R R R R R R R R R R R R R
set env BLOCK_NAME BLOCK_2

BHHHBHHHRHH B HH B H BB H R R R R H R R H R H R
Run Focus ...
BUHHHHHHHRHH B HH B H R TR H R H R R R H R R H R H R
focus \

focus.tcl \

| & tee focus. | og

HHHHHBRH R RS R R R R R R R R R R R R R R
End.
HBHBHHHHHHBH B R RHBH B H R B R AR R

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 12 of 15 Confidential

25 February 2005 © Jennic 2004

9.2. Focus Run Script

Fe o m e
COVWERCI AL | N CONFI DENCE Copyright Jennic Ltd @ 2004

#

Jennic Ltd. Sheffield, Furnival Street,

Sheffield S1 4QT.

Tel: +44 144 2812655 e-nmil:info@ennic.co. uk

He s m e
Project Nane . FISHTAI L_TRI AL

Filenane . focus.tcl

Oiginator : Danny Traynor

Function . Top-Level FishTail Focus Invocation TCL script

#

set detailed notes 2

HUHHHHRHH R R R R R R R R R R R R R R R R R
Run variables ...

HUHHHHRH R HH SRR R R R R R R R R R R R R R R
set BLOCK_NAME $env(BLOCK_NANME)

#####ﬁ#####I######I##
Read verilog files ...
HHH SR R R R
read_design \

verilog_files.txt \

-desi gn_name ${ BLOCK_NAME} \

-incdir /soc/Fl SHTAI L_TRI AL/ ${ BLOCK_NAME} / 20040405/ RTL \

-v {/soc/ Fl SHTAI L_TRI AL/ MEMORI ES/ RAM RAMB192WB2B. v \

/ soc/ FI SHTAI L_TRI AL/ MEMORI ES/ ROM ROML2288WB2B. v}

SR R R R
Read synthesis constraints and pragnas ...

HHH SR R R R
sour ce ${BLOCK_NANE} _i nput _constraints.tcl

sour ce ${ BLOCK_NAME} _pragnmas.tcl

BHUHHHRHHHHHHHHHHH SR R HHHHHHHHE R BB a ig
ldentify nodes of operation ...

BHUHHHRHHHHHHHHHHH S H H HHR A HHHHHHHHE RS aaig
updat e

report_nodes -all -output_file ${BLOCK_NAME}_nodes. t xt

R R R R
Wite golden timng constraints ...
HHH SR R R R R
set sequential _control O
wite gtc \
-design_script setup.tcl \
-output_file ${BLOCK_NAME} fp.gtc
wite assertions \
${BLOCK_NANME} _fp.gtc \
-output_file ${BLOCK NAME} fp.gtc.assertions

set sequential _control 1
wite gtc \
-design_script setup.tcl \
-output_file ${BLOCK_NAME} _ntp.gtc
wite_assertions \

${BLOCK_NAME} fp.gtc \
-output_file ${BLOCK NAME} fp.gtc.assertions
qui t

HHHHHHRH R RS R H TR R R R R R R R R R R R R R R R
End.
HUHHHHRH AR HH SRR R R R R R R R R R R R R R

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 13 of 15 Confidential

25 February 2005 © Jennic 2004

9.3. Focus Setup Script

Fe o m e
COVWERCI AL | N CONFI DENCE Copyright Jennic Ltd @ 2004

#

Jennic Ltd. Sheffield, Furnival Street,

Sheffield S1 4QT.

Tel: +44 144 2812655 e-nmil:info@ennic.co. uk

He s m e
Project Nane . FISHTAI L_TRI AL

Fil enane . setup.tcl

Oiginator : Danny Traynor

Function . FishTail Focus wite_gtc design script

#

set BLOCK_NAME $env(BLOCK NAME)

HAHBH SRR H B H R AR R R R R R T AR R R R R R R R R R
Read verilog files ...
HEHBH SRR R H R R R A R A A R T AR R R A R R R R
read_design \

verilog_files.txt \

- desi gn_nare ${ BLOCK_NAVE} \

-incdir /soc/FI SHTAI L_TRI AL/ ${ BLOCK_NAVE} / 20040405/ RTL \

-v {/soc/ Fl SHTAI L_TRI AL/ MEMORI ES/ RAM RAMB192WB2B. v \

/ soc/ FI SHTAI L_TRI AL/ MEMORI ES/ ROM ROML2288WB2B. v}

HEHBH SRR H B H R A R R A T AR R R R A R R R R
Read synthesis constraints and pragmas ...

HEHBH SRR R H B H R AT R R R R A T AR R R R A R R R R
source ${ BLOCK_NAME} _i nput _constraints.tcl

sour ce ${ BLOCK_NANE} _pragnas. t cl

HUHHHHRH R R R R R R R R R R R R R R R R
End.
HHHHHHRH R R R R R R R R R R R R R R R R R R

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 14 of 15 Confidential

25 February 2005 © Jennic 2004

9.4. Focus Input Constraints File

SR R R R
BLOCK 2 clock definitions and boundary constraints ...
B e e e e

R R R R

Created by Design Conpiler wite_sdc on Thu Apr 15 14:33:58 2004
R R R R

set sdc_version 1.3

create_cl ock -name "CLK" -period 60 -waveform {0 30} [get_ports {clk}]
create_cl ock -name "CLK VIRT" -period 60 -waveform {0 30}
create _cl ock -name "BACKUP_CLK 32K" -period 60 [get ports {backup_clk_32k}]

set _i nput _delay 20 -max -clock CLK VIRT [get_ports {test_rdio_pd}]
set _input_delay 0.25 -mn -clock CLK VIRT [get_ports {test_rdio_pd}]
set _input_delay 20 -max -clock CLK VIRT [get ports {test _rc_bp}]
set_input_delay 0.25 -nin -clock CLK VIRT [get_ports {test_rc_bp}]

ééi_i nput _delay 20 -max -clock CLK_VIRT [get_ports {async_rst_n}]
set _input_delay 0.25 -mn -clock CLK VIRT [get_ports {async_rst_n}]

set _output_delay 20 -max -clock CLK VIRT [get_ports {disable_|level _shifters}]
set_output_delay -0.25 -nmin -clock CLK VIRT [get _ports {disable_|evel shifters}]
set _out put _del ay 20 -max -clock CLK VIRT [get ports {en_bypass_xtal 33}]
set_output_delay -0.25 -nmin -clock CLK VIRT [get_ports {en_bypass_xtal 33}]

set _output _delay 20 -nmax -clock CLK VIRT [get_ports {en_xtal _33}]
set _output_delay -0.25 -min -clock CLK VIRT [get_ports {en_xtal _33}]

#set _clock_uncertainty 1 -setup CLK

#set _clock_uncertainty 0.25 -hold CLK

#set _clock_latency 0.5 CLK

#set _clock_uncertainty 1 -setup CLK VIRT
#set _cl ock_uncertainty 0.25 -hold CLK VIRT
#set _clock_latency -source 0.5 CLK VIRT
#set _max_area O

#set _w re_| oad_node "encl osed"

HBHBHHHHHHBH B R R HBH B H R BB R R R R R R R R R R R
End.
HBHBHHHHHHBH B R BHBH R R B R R R R R R R R R R

9.5. Focus Pragma File

HAHBH SRR H B H A R R R R R T AR R R R A R R R R R
BLOCK_ 2 pragnas ...

HEHBH SRR H R H R AT R R R R R A T AR R R R R R R R R
set _pragma ft_cl ock_source clk

set _pragma ft_cl ock_source backup_cl k_32k

set _pragma ft_node_source test_en
set _pragnma ft_npde_source use_backup_cl ocks

HBHBHHHHHHBH B R RHBH R R BB R R R RHHR RHRHRR
End.
HBHBHHHHHHBH B R RHBH B H R B R R RHHHHRHRHRHRHRHHRHR RHRHR

FISHTAIL_TRIAL/RP001039 v0.2 / DJT Page 15 of 15 Confidential

25 February 2005 © Jennic 2004

