ModelSim.

ModelSim 5.7 SE Performance
Guidelines

Model Technology
November 2002

Model Technology Page 1 of 16

Table of Contents

GENERAL PERFORMANCE CONSIDERATIONS 3
WHY IS THIS DOCUMENT IMPORTANT?oiiiiitiie oot et eee e et e et e e e et e e e e eaaeeeeeaneeeeeaaeeeeenneeeenneas 3
WHAT ARE YOU MEASURING?oooeuuiiiieittie et eeee e et e et e e e e e eeaee e e eeaeeeeeaeaeeeeaaeeeeeaneeeeeaseeeeenneeeenneas 3
HOW ARE YOU MEASURING PERFORMANCE?cuuiiiiiiiieeeetieeeeeteeeeeeeee e e et e e et e e eeaeeeeeaeeeeeeaaeeeeenneeeenneas 4

Measuring Time With Operating SyStem COMMANGSccc.ccovceevieiveioiiienieee et 4
Measuring Time and Memory Usage with ModelSim commands..................cccccooceevcveviincincenianeaene. 5
USING THE PERFORMANCE ANALYZER ...coouuuuiiiiiiiieieee e e eeeeeeee e e e e e e eeteeee e e e et e taaaeeseseeaaaaaneeesessssnanneeeeeerees 5
OTHER USEFUL TIPS.....cettttttttttttittteteteeeteteteteeeteteteseseterereretetetet ettt ettt ettt 5

VERILOG DESIGNS 6

GENERAL VERILOG FLOW ...eeiutttieeititeeeittteeesirteeeasseeessssseessssssesasssesssssssessssssesessssssssssssesssssssssssssssssssssessnsssens 6
RTL CONSIACTALIONS ... e et 7
Gate Vel CONSIACTALIONScoeeeiiieeeeeeeeeeeee et 8

MAINTAINING DESIGN OBJECT VISIBILITY ...etttuuuueteeetiteteeeeeeeeteaeeeeeeeeetaanaeeesesssasaeesesesssmsneesesesammnaanasees 8

ASSESSING AND INCREASING OPTIMIZATIONScccieeiutiiieeeeeeeiiiteeeeeeeeeeittereeeeeeeeensssseseeeeeesssssessseesesssnsseneens 9
GENerating AN MNSTANCE FEPOTL............cccueiui ettt ettt et ee et e et e ettt ne e et e ete e bt enteeneeeneeaneen 9
CFOSS-TEfCFEICING FEDOFLS......c.eeeet ettt ettt ettt ettt e e et e eb e e te ettt eneantensesene e 9
Relaxing optimization CONMSIFAINEScccueoueiueiieieeee ettt ettt ettt 10

USING “FORCECODE........cciuttieeeiteeeeeetteeeeeteeeeeeteeeeeeaeeeeetaeseeeaeeseeesaaeeeesseeeeessseeessseeeassseeeasseseesseeeenseeeeannes 11

VHDL DESIGNS 11

MIXED HDL DESIGNS 12

USING ELABORATION FILES TO IMPROVE REGRESSION TEST THROUGHPUT 13

IMPROVING GATE-LEVEL PERFORMANCE WITH SIMULATOR OPTIONS.......cccccovreeereeccees 14

IMPROVING PERFORMANCE BY RESERVING MEMORY 14
LOCKING MEMORY ON HPUX 10.2 AND I 1.0 c......oooeeeeiieeiieeeeiee ettt evee e vae e e svaaaesnavae s enesaaaennaaaens 14
ENABLING SHARED MEMORY ON SUN/SOLARIScoeeueeeeeeeeeeeee e eeeee e e e e e e eeneeeeeaeeeean 16

Model Technology Page 2 of 16

General performance considerations

Any discussion about simulator performance should begin with two questions: “What are you
measuring?” and “How are you measuring it?" This section addresses those questions and discusses a
few other general considerations for analyzing and improving performance.

Why is this document important?

The difference in optimizing and not optimizing a simulation is very dramatic. Can your environment
run 2x, 4x or even 10x faster? There is no solid number that is the same for every environment. By
following the flow described in this document you can maximize ModeSim performance for your
Simulation environment.

What are you measuring?

HDL simulation isonly part of verification. Y ou must determine the impact of the entire environment
when considering simulation performance. The picture below illustrates the various flows that may
affect your simulation:

Simulation environment

Debugging
HDL style and System
abstraction level integration
Intellectual Analog
property
Testbench
language

Any of these flows may negatively impact simulation performance. The HDL code may be inefficient;
testbench languages and 3rd party debug tools may slow the simulation; gate-level |P may be
un-optimized. Consider that 3 party testbench implementation alone often account for greater than
80% of the overall simulation performance. If thisisthe case you should consider investigating the
reason 80% of the time is being spent on the testbench and it’ s interface. The Performance Analyzer™
in Model Sim (discussed below) may help you identify which of these flows isimpacting simulation
speed the most.

Turning to the simulator itself, it’ s critical to realize simulators are run in two modes, interactive and
batch. Interactive mode is generally associated with debugging where maximum visibility into the
design is needed. Batch mode jobs are run in the background without the User Interface (Ul).
Performance is generally the highest priority when running in batch mode. Simulators in optimized
performance mode remove visibility into a design. Model Sim, especially with Verilog is in debug
mode. For performance you must employ compiler optimization switches. Therefore, to accurately
compare simulation results you must realize all simulators have two modes:. optimized for performance
and un-optimized for debug. Make sure you are comparing the same modes.

Model Technology Page 3 of 16

Another consideration is what part of the simulation you are measuring. Model Sim has separate
compilation and simulation steps. Furthermore simulation is a two-phase process. During phase 1
(known as elaboration), Model Sim generates native code for your specific OS. During phase 2,

Model Sim runs the native code. Y ou'll gain the most accurate performance statistics by measuring the
elaboration phase and run phase separately. As discussed below, you can use the —elab switch or the ps
command to measure these two phases independently.

How are you measuring performance?

Different measurement methods may report different simulation times. Simply stop-watching a
simulation may not produce an accurate measurement.

Measuring Time With Operating System commands

There are two types of time: “wall clock time" and “cpu time”. If the Model Sim simulator, vsim , isthe
only process running on a machine, these two times should be approximately the same. However, if
other jobs are taking a large percentage of the machine's processor time, "wall clock time" will not
accurately represent true simulation time. Measure cpu time to eliminate interference from unrelated
processes.

The ps command provides one way of measuring cpu time. The time it reportsis the cpu time since the
process was started. This command:

exec ps -ef | grep vsim

returns the following:
user 25508 25507 48 16:12:09 pts/9 29:13 vsim top

This example shows avsim process that has been running for 29 minutes and 13 seconds.

Unless you are using the vsim —elab option (discussed below), you must execute the ps command
twice to obtain the run time. For example the command shown below would report two times. The first
time reflects elaboration time and the second reflects the total time for both elaboration and simulation.
To get the simulation time alone, subtract the first time from the second time.

vsim -c -L cell 1lib top -do “exec ps -ef | grep vsim; run -all; exec ps —ef | grep vsim”

Another way of measuring timeisthe UNIX time command. However, this command does not allow
you to separate elaboration and run times. This command:

time vsim -c -L cell 1lib top -do “run -all”

returns one of two formats depending on the shell:
11.0u 38.0s 1:45 46% 0+0k 0+0io Opf+0w

or

real 1:45.5
user 0:11.2
sys 0:38.2

The threetimesin the first example are user (u), system (s), and real. The system time represents the
sum of elaboration and run times. The real timeis"wall clock time."

The numbers from the time command may be misleading due to heavy system load. To check the
numbers accuracy, sum the user and system times. The total should be pretty close to thereal time. If
itis not, thereisalarge load on the system, and you shouldn’t rely on the numbers.

Model Technology Page 4 of 16

Measuring Time and Memory Usage with Model Sim commands

The Model Sim simstats command reports various statistics about the current simulation. Executing
simstats on the Model Sim command line returns the following:

{memory 7856} {{working set} 6032} {time 17.1826} {{cpu time} 17.1} {context 2} {{page
faults} 1}

where:

memory = Total memory being allocated for the ModelSim process

working set = Portion of total memory in use for the current simulation

time = Cumulative “wall clock time” for run commands

cpu time = Cumulative processor time for run commands

context = The number of context swaps that have occurred during the run commands (vsim being
swapped out for another process)

page faults = The number of page faults the have occurred during the run commands - a large
number can indicate insufficient physical memory

The simstats command uses OS calls for itsinformation. Not all OSs support queries for every
parameter, in which case simstatswill return zero for that parameter. If you are using simstats in batch
mode it may be necessary to use the echo command to force the results to be written to the transcript,
instead of “simstats’ use “echo [simstats]”.

Using the Performance Analyzer

The Performance Analyzer identifies bottlenecks in your design. Once these bottlenecks are corrected,
you should see substantially faster simulations.

To enable the Performance Analyzer, invoke the profile on command before the simulation run
begins. After the simulation stops, invoke profilereport -file profile.rpt to save the results. These
commands can al so be used interactively with the UI.

One option of noteisthe keep_unknown argument. This argument tells the analyzer to keep statistics
about items not found in the HDL code. This helps locate bottlenecks in FLI/PLI routines, third-party
interfaces, and the like. Use this command to enable the argument:

profile option keep unknown

See the Performance Analyzer chapter in the Model Sim SE User’s Manual for further details.

NOTE: The Performance Analyzer can increase simulation times by up to 10%. Therefore, do
not use it when timing simulations. Invoke the analyzer in a separate run.

For most accurate line number information when using the +opt or —fast Verilog compile options also
use the +acc=l compile option. Thisinsuresthat line number information is available for the
Performance Analyzer.

Other useful tips

e Another useful command for measuring memory footprints isthe mti_kcmd memstats
command. Execute this command from the VSIM> prompt to print memory statistics to the
shell window that invoked Model Sim. For windows OS this command must be run from a dos
shell. If ModelSim isinvoked from a shortcut on a Window’s machine, no information is
returned.

e Compileand run designs from alocal drive/disk whenever possible. Network traffic can
significantly slow processes that require large amounts of file 1/O. If you have alarge
numbers of files, you may want to copy them to alocal disk prior to compiling and
simulating.

Model Technology Page 5 of 16

e Avoid using the GUI when running benchmarks. The GUI adds overhead and is not needed
unlessyou are interactively debugging a design.

e To maximize ModelSim performance, use the flows based on the mix of HDL in your
environment. The following sections discuss flows for specific HDL mixes.

e Make sureyou are running in the highest simulation resolution possible. For example, do not
run in ps modeif nsresolution is functional.

e Make surethat you have enough physical memory to run the process. Swapping to virtual
memory can significantly impact performance of any run. Choose the right machine for the
job.

e Monitor the load of the machine on which you are running. A machine with multiple jobs
competing for CPU and memory resources will impact wall clock run time. Also multi-cpu
machines must compete for the same memory interface and will impact the run time of ajob.

e ModelSim has support for 32- and 64-bit OS. The 32-bit OS memory address limit is 4GB.
For simulation jobs that require more than 4Gb of memory, you must use 64-bit OS versions
of ModelSim. The use of 64-bit OS version of Model Sim should be restricted to those jobs
that require more than 4Gb of memory to run. 64-bit OS versions use approximately 30%
more memory and are approximately 30% slower than 32-bit versions of the same OS.

e The use of self-checking testbenches to eliminate the need for file 1O can improve
performance.

Verilog designs

General Verilog flow

There are two optimization flows for Verilog design: Verilog RTL and Verilog gate. The general flows
are the same with some noted exceptions. For a more complete discussion, see the Verilog chapter in
the ModelSm SE User’s Manual.

It's critical to realize simulators are run in two modes, interactive and batch. Interactive mode is
generally associated with debugging where maximum visibility into the design is needed. Batch mode
jobs are run the background without the User Interface (Ul). The opportunity for increased
performance is generally the highest when running in batch mode since you generally need less
visibility into the design. Simulators in optimized performance mode remove visibility into a design.
Model Sim default mode with Verilog isin debug mode, which provides highest visibility. For
performance you must employ compiler optimization switches. Therefore, to improve ModelSim
simulation results you must engage the global compiler optimizations.

Improving Verilog performance starts with using compiler optimization arguments. Y ou can increase
simulation speed significantly by compiling with the +opt global optimization compile argument. This
option merges always blocks, in-lines instantiated modules, and performs cell-level optimizations. It
also reduces or eliminates events and improves memory management.

ModelSim’s Verilog compiler “vlog” has two global optimization switches. They are very similar in
that they both engage the same performance algorithms. The main differences are that you may use
+opt to update a previously compiled non-optimized design, asin the example 4 below. The —fast does
not allow optimization of previously optimized designs, but does support incremental compile. If you
changed onefilein along list of previously compiled files you can incrementally compile only the
source file that was modified by using -incr option with —fast (vlog -f list.f —fast -incr). Remember to
use the original full viog compile options when using —incr. The —incr option does not work with +opt.

The sample compile scripts below demonstrate several methods for compiling a Verilog design with
+opt. The examples use two other compiler arguments: -O5, which optimizes loops and case
statements, and —debugCellOpt, which prints messages regarding cell-level optimizations. All
examples are appropriate for designs with RTL, gates, or both.

Model Technology Page 6 of 16

NOTE: Model Sim recognizes a module as a gate if the module contains a non-empty specify block.
Earlier versions of Model Sim identified gate cells using the compiler directive “celldefine. Thisisno
longer the case.

Verilog compile script example 1 #HE#H
#

+opt option enables the global optimizations

#

vlib work

vlog -05 +opt —-debugCellOpt tcounter.v counter.v
#

end compile script example 1 #HEHH

If you have amore extensive list of files, you can use the -f compile argument to specify atext file that
contains alist of your design'sfiles. In the example below, list.f includes tcounter.v and counter .v:
Verilog compile script example 2 #HHEHH
#
+opt option enables the global optimizations
-f option will use the file to get list of files to compile
#

vlib work

vlog -05 +opt -debugCellOpt -f list.f

#

end compile script example 2 #HEHE

If you have multiple, pre-compiled libraries, you can use the -L compiler argument to access them
while using +opt. In the next example, the counter was compiled into a separate library (dut), and the
testbench into the default work library. The -L argument makes the counter module visible when you
compile the testbench.

Verilog compile script example 3 #HEHH

The counter module is compiled into the library dut

The testbench module is compiled into the default work library
+opt option enables the global optimizations

-L option will provide access to the counter module

#

vlib work

vlib dut

vlog -05 -work dut counter.v

vlog -05 +opt -debugCellOpt -L dut tcounter.v

end compile script example 3 #HEHH

Note that counter.v was not compiled with +opt. When the top-level cell in tcounter.v is compiled with
+opt, al instances in the hierarchy are optimized, including any modulesin the dut library.

+opt can also handle designs that were previously compiled without optimizations. This typically occurs
when designers are moving from a debug phase to aregression phase. The following example uses a
variation of the +opt argument to optimize a previously compiled design. In this example the counter
moduleis compiled in the library dut as in example 3, and the testbench tcounter is compiled into the
default work library. Neither of these modules has been optimized at this point.

Verilog compile script example 4 #HHHE

i +opt+tcounter option enables the global optimizations

Note only the top level module name and library references are needed
ilog -05 t+opt+tcounter -debugCellOpt -L dut

i### end compile script example 4 #HEHH

RTL considerations
With RTL designs, verify that the modules are being in-lined by the compiler. When invoked with the +opt

Model Technology Page 7 of 16

argument, the compiler reports how many modules are in-lined:

Analyzing design...
Optimizing 48 modules of which 24 are inlined:

Thisindicates that +opt in-lined 24 of the 48 modulesin the design. 50% module in-lining is low. The
greater the percentage of in-lined modules, the better the performance. If you have alow percentage of in-
lined modules, please contact your Model Sim support personnel.

Y ou should also try to optimize any gate-level cellsin an RTL design. RTL designs often have gate-
level cells, and sometimes you may not even know they have been added. For exampleit istypical to
add 10 pad cells as a project nears completion. Un-optimized gate-level cells significantly impact RTL
performance. In addition to using the -debugCellOpt compiler argument to identify un-optimized
cells, you can generate reports on modules and their optimization with the write cell_report or the
writereport command. See “ Assessing and increasing optimizations’ below for details.

Gate level considerations

In most cases the examples presented above will work equally well for both gate-level and RTL
designs. However, multi-million gate netlists may compile slowly with +opt. If netlist compiletimeis
an issue for agate-level design, you may prefer to use the following modified flow:

e Create separate work directories for the cell library and the rest of the design.
e Compileonly the cell library using +opt.
e Compilethe device under test and testbench without +opt.

e |f supported by your platform, reserve system memory for vsim. See “Improving Performance
by Reserving Memory” below for details.

However, because this flow does not perform global optimizations on the testbench, you may see
slower simulation performance than when using +opt on the whole design. Consider the tradeoff
between netlist compile time and complete optimization.

Another caveat to the modified flow isthat it can cause problemsiif the testbench has hierarchical
references into the cell library. Optimizing the library alone results in unresolved references. In such
cases you must use the original flow. The original flow considers hierarchical cell references before
enacting optimizations.

Finally, if you have a choice between VHDL Vital and Verilog, use Verilog. With Verilog cellsand a
Verilog netlist (regardless of testbench language), performance can be 4-8x faster than the same design
in VHDL Vital. The memory footprint will also be 4-8x smaller.

Maintaining design object visibility

Some of the optimizations performed by +opt may impact design visibility of nets, ports, and registers.
If you need to maintain access to these objects for debugging purposes, use the +acc option in
conjunction with +opt. Keep in mind, however, that enabling design object access may reduce
simulation performance.

For example suppose you need to dump nets and registers of a particular instance in the design using
the $dumpvars system task. Y ou would have something like the following $dumpvars call in your
testbench:

initial $dumpvars(l, testbench.ul);

In this case, compile your design as follows to enable net and register access for the module (assuming
testbench.ul refers to a module design):

)

% vlog topt +acc=rntdesign testbench.v design.v

Model Technology Page 8 of 16

For amore detailed discussion of the +acc option, see “Enabling design object visibility with the +acc
option" in the Verilog simulation chapter of the ModelSm User’s Manual.

Assessing and increasing optimizations

Generating an instance report

For designs that contain cells, always verify that cells with the highest instance counts are being
optimized. Usethewrite cell_report commands to generate alist of all instancesin the design and
then cross-reference this with the output from —debugCellOpt (see Cross-referencing reports below).
It's possible you can "force" acell to be optimized, thereby improving performance.

For example, consider the compile script below:
#44444 Verilog Gate Compile Script Example #H##

shell commands to help remove directories

IMPORTANT: gate-level libraries can be enormous

move them instead of removing as part of the

script. This will make the scripts run faster

ANYTHING you can do to make the compile go faster!!!!

you can remove the * remove directories as a background task

+opt option is used to enable optimizations
-debugCellOpt will provide optimization information
compile.txt will be used as a cross-reference

H= o3 o S 3 3 S S S S

touch work asic lib fast

mv work /tmp/work remove

mv asic_lib fast /tmp/asic_lib fast remove

compile the asic library

vlib work

vlib asic_lib_ fast

vlog -work asic lib fast asic lib src/*.v

compile the rest of the design using +opt and reference the library with the -L
vlog topt -debugCellOpt -L asic_lib fast ./src/device.v ./src/Testring.v > compile.txt
#

End Verilog Gate Compile Script Example

Thewritecell_report command identifies whether cells have or have not been optimized. Once the design
has been compiled, invoke vsim on the top level (tb) asfollows:

vsim tb -L asic lib fast -do "write cell report report cell.txt; quit -f"

Thewritecell_report output is sorted by instance count. In this example the report_cell.txt file would
contain this type of information:

3600 of FF PRE are Optimized
1823 of cellA are Optimized
384 of FF are Not Optimized

338 of cellB are Optimized

Cross-referencing reports

Once you have output from write cell_report you can compareit against the information generated
during compilation. If any of the most instantiated cells are not optimized, you should try to optimize
them. Suppose that cell FF isinstantiated frequently, and it is not optimized. Y ou might see a message
like the following in the compilation output:

-- Optimizing module CELL OR7 (fast)
-- Optimizing module CELL OR2 (fast)

Model Technology Page 9 of 16

-- Optimizing module FF (fast)
WARNING[10]: asic_lib_src/FF.v(26): Not optimizing library module because the UDP has

non-zero delay
WARNING[10]: asic_lib src/FF.v(10): Module FF could not be compiled as an optimized

cell

This type of issue occurs often and can be resolved easily. The extracted code below shows that line 26
from FF.v has a structural delay (#.01(out_i,clki, input, en, sense, reset);). This type of delay isnot
supported with cell library accelerations.

and(clken, rstn, en);

and (reset_enable, rstn, en);
buf (out e, out i);

“ifdef func
ff udp (out i, clk i, input, en, sense, reset);

“else
ff udp #0.01(out i, clk i, input, en, sense, reset);
“endif

There are two options for optimizing this cell. The first is to use the viog compiler argument
+delay_mode_path. This argument causes the compiler to ignore al non-zero delays. The command
below demonstrates the use of this argument;

vlog -work asic lib fast +opt -debugCellOpt +delay mode path ./asic lib src/FF.v

The second option is to define the compile variable func. Thisvariable is used to selectively instantiate
either the delayed or non-delayed version of the UDP. To employ the functional, non-delayed output
version of the UDP instance ff_udp, invoke the following command:

vlog -work asic lib fast +opt -debugCellOpt +define+func ./asic lib src/FF.v

Regardless of which method you use, the new compile results will look as follows:

Model Technology ModelSim SE vlog 5.5 Compiler 2000.12 Dec 14 2000
-- Compiling module FF
-- Compiling UDP ffsrce

Top level modules:
FF

Analyzing design...

Optimizing 2 modules of which 0 are inlined:

-- Optimizing UDP ff udp(fast)

-- Optimizing module FF(fast)

NOTE: asic_lib _src/FF.v(10): Optimizing cell module FF

NOTE: asic_lib src/FF.v(10): All path delays specified for module FF were simple

Relaxing optimization constraints

Another way to gain performance is by reducing optimization constraints. +opt usesfairly
conservative algorithms to implement optimizations. This reduces the chance of incorrect results but
also impacts simulation performance. Most designs can be simulated correctly with these constraints
removed; however, results should always be checked if the constraints are removed.

The +nocheck arguments described below remove these constraints. See the Model Sm Command
Reference for complete syntax.

Argument Description

‘+nocheckALL Enables all +nocheck arguments described below

Model Technology Page 10 of 16

‘+nocheckCLUP Allows connectivity loopsin a cell to be optimized

‘+nocheckDNET Allows both the port and the delayed port (created for negative
setup/hold) to be used in the functional section of the cell.

‘+nocheckOPRD Allows an output port to be read internally by the cell. Note that if
the value read is the only value contributed to the output by the cell,
and if there's adriver on the net outside the cell, the value read will
not reflect the resolved value.

‘+nocheckSUDP Allows a sequential UDP to drive another sequential UDP.

Using -forcecode

As noted previously, +opt attempts to in-line (combine) any module(s) that are referenced. When this
in-lining occurs, no fast.asmfile is created in the in-lined modules’ library directory. Without a.asm
file, the simulator could not instantiate this module directly. The -for cecode argument ensures that the
.asmfileis generated for in-lined modules.

For example suppose that you have four library cells, inv_a, inv_b, inv_c, and inverter. The cell
inverter isinstantiated in each of the other cells (inv_a, inv_b, and inv_c might be some sort of timing
wrappers). If these cells are compiled with +opt and without -for cecode, only inv_a, inv_b, and inv_c
will have afast.asmfile generated in their library directory. The cell inverter will not have afast.asm
fileinitslibrary directory. Alternatively, when these cells are compiled with -for cecode, the compiler
will create thisfile for every cell regardiessif it has been in-lined. We recommend that customers use
this switch when compiling all gate-level libraries.

NOTE: In-lining will occur only if the lower-level module is not acell. ModelSim 5.6 and later treats
any module with a non-empty specify block asacell. ModelSim 5.5 and earlier used the compiler
directive “celldefine to identify cells. Also, Model Sim never in-lines UDPs.

VHDL designs

For most designs, ModelSim VHDL is optimized for performance with the default compiler options.
Some designs with many “for” loops or many arrays may simulate faster if you use additional compiler
arguments. The -O5 option implements additional compiler optimizations, especially for loops. The
-nocheck arguments eliminate checks for out-of-bounds scalar assignments or out-of-bound access to
arrays. These arguments are summarized below:

Argument Description

-nocheck Disable run-time range and index checks
-noindexcheck Disable run-time index checks

-nor angecheck Disable run-time range checks

-O5 Enable additional compiler optimizations

Model Technology Page 11 of 16

Mixed HDL Designs

In amixed HDL environment you can optimize for performance using the +opt on sections of
hierarchy contain Verilog. In the figure below, compiling the top Verilog instances with +opt will
optimize the two areas of Verilog hierarchy.

Compile top level Verilog module(s) with +opt

VHDL testbench

top_right
module

top_left
module

Verilog

Pure Verilog and Verilog with VHDL can be optimized

VHDL RTL usersfind that using Verilog Gate level netlist and Verilog Gate libraries run much faster
than using VHDL and VITAL. Using the existing VHDL testbench and Verilog gatesisavery
common Mixed HDL flow. In addition to this Mixed Gate level flow, many projects are now using
both VHDL and Verilog RTL flows. The +opt iswell suited for both RTL and Gate flows.

Prior to release 5.6b you would get this error if there wasaVHDL instancein a Verilog Module you
tried to optimize. With the 5.6b release this error is now a Warning.

WARNING[10]: design.v(1507): Instantiation of VHDL entity "low level" is not
optimized.

To identify the highest level module(s) of Verilog to optimize, compile the entire design without
optimizations, then load the design and use the structure window. In addition to using the visua tool, email
tme@model.com and request the “pure Verilog” tcl script. The script automates the process of identifying the
modules you may optimize. It also provides the needed library referencesto satisfy the requirement to have
visibility to all portions of the hierarchy being optimized.

Thetop level Verilog modulesin the diagram above are top_left and top_right, and areinitialy compiled
into the default work library. They also refer to instancesin aspare partslibrary. The—L option isused to
refer to this spare_parts library located elsewhere on the network. The following command will optimize
from the two highest Verilog modules.

vlog —work work +opt+top_|left +opt+top_right —L /net/host23/export/project/spare_parts

Model Technology Page 12 of 16

mailto:tme@model.com

Using this mixed HDL optimization flow can greatly improve your simulation run time. Prior to the 5.6b
release you could optimize only the top_left hierarchy, now with the new flow in 5.6b you can optimize
both Verilog hierarchy top_left and top_right.

Using elaboration files to improve regression test
throughput

Elaboration refers to the process of generating native code for your platform. The Model Sim simulator,
vsim, elaborates every time you load adesign. If elaboration is a significant part of your overall
simulation run time, you can isolate the elaboration phase to improve your throughput. In other words,
you create an elaboration file once, and then simulate it multiple times. Elaboration files can be used
for RTL or gate-leve runs.

For example a multi-million, gate-level run may take 20 minutes to elaborate and annotate SDF timing,
and an additional 20 minutesto run. A second run with different testbench stimulus also takes 20
minutes to load and 20 minutesto run. If you generate an elaboration file on the first run, you eliminate
the 20-minute elaboration and SDF annotation time for the second and subsequent runs. Loading an
elaboration file takes seconds, instead of minutes.

In many cases design-loading time is not that important. For exampleif you' re doing "iterative
design,” where you simulate the design, modify the source, recompile and re-simulate, the load time is
just asmall part of the overall flow. However, if your design is locked down and only the test vectors
are modified between runs, loading time may materially impact overall simulation time, particularly
for large designs loading SDF files.

Another reason to use elaboration filesis for benchmarking purposes. Other simulator vendors use
elaboration files, and they distinguish between elaboration and run times. If you are benchmarking
Model Sim against another simulator that uses elaboration, make sure you use it with Model Sim as well
S0 you're comparing liketo like.

The vsim arguments for creating and using elaboration files are summarized below. See the ModelSm
Command Reference for complete details.

IArgument Description

-elab <filename> Creates an elaboration file

-load_elab <filename> |Loads an elaboration file

-compress_elab Compresses an elaboration file when it is created

-filemap_elab Establishes a map between files named during the original
elaboration file generation, and alternate file(s) to be used for
subsequent runs.

Design considerations for use of elab option

For gate level designsiit is best to specify SDF annotation files on command line. If you use
$sdf _annotate() task, it must bein an init block so that it isincluded in the elaboration file.

Test vectors should be read from afile. Theload elab feature has support for file mapping (-
eab_filemap) so that asingle elab image can read different files.

Model Technology Page 13 of 16

Improving gate-level performance with simulator
options

Asnoted earlier, Model Sim’ s default simulation behavior promotes maximum debugging capability.
However, you can specify simulator arguments that will promote simulation speed instead.

The following arguments to vsim will improve performance when simulating gate-level Verilog
designs. Keep in mind that you are disabling functionality by using these arguments.

Argument Description

+notimingchecks Disables Verilog and VITAL timing checks for faster simulation. By
default, Verilog timing check system tasks ($setup, $hold,...) in specify
blocks are enabled. For VITAL, the timing check default is controlled
by the ASIC or FPGA vendor, but most default to enabled.

tnonotifier Speeds simulation by disabling unknown (X) propagation for timing
constraint violations. Timing messages for the violations are still
i ssued.

Y our vsim command might look like this:

vsim tb -L asic_lib_ fast +notimingchecks +nonotifier -do run -all; quit -f"

NOTE: +notimingchecksis also a compiler option. Using +notimingchecks at compile time reduces
the memory footprint, since the data structures for the timing information are not generated.

Improving performance by reserving memory

HP and Sun both allow you to reserve memory for specific processes. This can significantly increase
performance, particularly with large simulations. The sections below discuss these methods.

Locking memory on HPUX 10.2 and 11.0

Memory locking on HPUX serves two purposes on the 10.2 platform, allows larger page sizes and
allows memory addressing above 2GB. The 11.0 platform includes large page sizes as part of the OS.
Therefore the only benefit memory locking provide for 11.0 is memory addressing above 2GB.

ModelSim 5.3 and later versions contain a feature to allow HPUX to use locked memory. This feature
provides significant accel eration of simulation time for large designs—i.e. with amemory footprint >
500Mb. (Test cases showed 2x acceleration of large simulations.) The following steps show how to set
up HPUX so memory can be locked.

1 Allow the average-user to lock memory. By default, this privilege is not allowed, so it hasto be
enabled. To allow everyone MLOCK privileges, the administrator needs to execute this command
on the machine that will be running ModelSim:

/usr/sbin/setprivgrp -g MLOCK

To only allow a particular group MLOCK privileges, use the command:
/usr/sbin/setprivgrp <group-name> MLOCK

Thisallows you to lock memory. No other privileges are enabled.

2 Oncethe MLOCK privilegeis enabled, you merely have to modify the modelsim.ini file, and add
the following entry to the [vsim] section:

LockedMemory = <some-value>

Model Technology Page 14 of 16

where <some-value> is an integer representing the number of megabytes of memory to be locked.
Once thisis done, the memory will be locked when vsim invokes (using this .ini file).

Model Sim will not lock more memory than is available in the system. The maximum memory that can
be locked is: system physical memory (RAM) - 100 Mb = locked memory

When Model Sim locks memory, other processes will not have access to it. Therefore, you should
consider how much memory islocked on a per-design basis to avoid locking more than is needed.

System parameters used for shared/locked memory may not be set (by default) high enough to take full
advantage of this featurein later generations of HPUX. Using the "sam" program, go to the
"Configurable Parameters" window (under "Kernel Configuration™"). There are several values that may
need to be increased.

First, enable shared memory. The value for "shmem" should be equal to 1. Set the value for "shmmax"
aslarge as possible. The defaults for the values of "shmmin" and "shmseg" should be ok. To change
these parameters, you have to rebuild the kernel and reboot.

Model Technology Page 15 of 16

Enabling shared memory on Sun/Solaris

Starting with the Model Sim 5.5b you can improve simulation performance on Sun/Solaris by enabling
shared memory. Up to a 2x improvement has been seen in large, Verilog gate-level smulations.

Follow these steps to use the feature:

1 Enable a large shared memory segment by adding the following line to the /etc/system file:
set shmsys:shminfo shmmax=0xffffffff

2 Reboot your machine.

3 Immediately after the machine has been rebooted, run the program vshminit (found in the
modeltech tree). The program takes a single parameter that is the amount of memory in megabytes
to reserve for use by the simulator. For example, running vshminit like this:

<modeltech-tree>/sunos5/vshminit 700

would reserve 700mb of space for use by the simulator. The next time you run the simulator it will
automatically detect the reserved memory and use it.

Important: vshminit must be run immediately after you reboot the machine. (Y ou
might want to add the program to the system startup scripts.) There may be no
performance benefit if you don't run it immediately after reboot.

The amount of memory you supply as a parameter to vshminit depends on the configuration of your
system. Typically you might want to reserve 50-80% of the system memory for the simulator,
depending on whether the machine is multi-use or is dedicated to running simulations.

To free the memory reserved by vshminit, execute the following command:
/bin/ipcrm -M 0x10761364

Model Technology Page 16 of 16

	General performance considerations
	Why is this document important?
	What are you measuring?
	How are you measuring performance?
	Measuring Time With Operating System commands
	Measuring Time and Memory Usage with ModelSim commands

	Using the Performance Analyzer
	Other useful tips

	Verilog designs
	General Verilog flow
	RTL considerations
	Gate level considerations

	Maintaining design object visibility
	Assessing and increasing optimizations
	Generating an instance report
	Cross-referencing reports
	Relaxing optimization constraints

	Using -forcecode

	VHDL designs
	Mixed HDL Designs
	Using elaboration files to improve regression test throughput
	Improving gate-level performance with simulator options
	Improving performance by reserving memory
	Locking memory on HPUX 10.2 and 11.0
	Enabling shared memory on Sun/Solaris

