
99

DC Tcl-me Tutorial

100

Agenda

Introduce DC Tcl
• Setup file changes
• DC Tcl Shell Basics
• DC Extensions to the Tcl language
• Writing Procedures
• Differences between DCSH and DC Tcl
• Converting DCSH scripts to DC Tcl

101

About DC Tcl Shell

• Native Implementation of the Industry
Standard Tcl Scripting Language

• DC-Tcl is NOT a wrapper around dc_shell!

• A DCSH to DC-Tcl translator is provided

• Both DCSH and DC-Tcl interfaces are
available

102

About DC Tcl Shell

• Either shell is specified when dc_shell is invoked
– Existing dc_shell is called DCSH mode
– New Tcl dc_shell is called DC-Tcl mode

• Once DC-Tcl mode is invoked it is not possible to
switch back to DCSH mode in the same dc_shell
session

• For Tcl version information, type: info tclversion

Tcl support in dc_shell does not imply support
for commands and attributes from PrimeTime

103

Agenda

• Introduce DC Tcl
Setup file changes

• DC Tcl Shell Basics
• DC Extensions to the Tcl language
• Writing Procedures!
• Differences between DCSH and DC Tcl
• Converting DCSH scripts to DC Tcl

104

New .synopsys_dc.setup file

• Beginning with 1999.05 the format of the root
.synopsys_dc.setup file has changed

• The root .synopsys_dc.setup and
supplemental files that are shipped with the
release are now in a Tcl Subset (Tcl-s)

• Common syntax for compatibility with DCSH

• A utility is provided that can translate your
DCSH scripts and setup files

105

New .synopsys_dc.setup file (cont)

• Commands supported in Tcl-s are:
– alias
– annotate
– define_name_rules
– get_unix_variable
– getenv
– group_variable
– if
– set
– set_layer
– set_unix_variable
– setenv
– source

106

dc_shell Root Home Local
mode setup setup setup
DCSH Tcl-s Tcl-s Tcl-s
DCSH Tcl-s Tcl-s DCSH
DCSH Tcl-s DCSH DCSH
Tcl Tcl-s Tcl Tcl

New .synopsys_dc.setup file (cont)

• For DCSH users, the home and local setup files
can be in either Tcl-s or DCSH format

• For DCSH users, if the local setup file is in Tcl-s,
then the home setup file must be in Tcl-s as well

• Valid Setup Configurations

107

Agenda

• Introduce DC Tcl
• Setup file changes

DC Tcl Shell Basics
• DC Extensions to the Tcl language
• Writing Procedures
• Differences between DCSH and DC Tcl
• Converting DCSH scripts to DC Tcl

108

 To Run DC Tcl Shell from the UNIX command line:
% dc_shell-t
OR
% dc_shell -tcl_mode

 DC Professional (TM)
 DC Expert (TM)
 Version 1999.05
 Copyright (c) 1988-1998 by Synopsys, Inc.
 ALL RIGHTS RESERVED

This program is proprietary and confidential information of Synopsys, Inc.
and may be used and disclosed only as authorized in a license agreement
controlling such use and disclosure.

Initializing...
dc_shell-t> _

To Exit DC Tcl:
dc_shell-t> exit

Memory usage for this session: 2091 Kbytes
CPU usage for this session 3 seconds.

Thank you...
%_

DC Tcl Shell Basics

109

dc_shell-t> help
Procedures:
 (user-defined procedures)
Builtins:
 (a very long list…)
Default Command Group:
 (another very long list…)

dc_shell-t> help *clock
 clock # Builtin
 create_clock # create_clock
 create_test_clock # create_test_clock
 remove_clock # remove_clock
 remove_propagated_clock # remove_propagated_clock
 report_clock # report_clock
 set_propagated_clock # set_propagated_clock

Getting Help

• To get a basic summary of all DC Tcl commands:

• Use a wildcard to find a command:

110

dc_shell-t> help -verbose set_input_delay
set_input_delay # Define arrival time relative to clock
 [-clock clock_name] (relative clock)
 [-clock_fall] (delay is relative to falling edge of clock)
 [-level_sensitive] (delay is from level-sensitive latch)
 [-rise] (specifies rising delay)
 [-fall] (specifies falling delay)
 [-max] (specifies maximum delay)
 [-min] (specifies minimum delay)
 [-add_delay] (don't remove existing input delay)
 delay_value (path delay)
 port_pin_list (list of ports and/or pins)

More Help!

• Use help -verbose for command syntax info:

• Use man command for complete man page info

• Also use command -help

111

This is an example of a comment in a DC Tcl script
set period 15

If you wish to comment on the same line, be sure to use
a semicolon before the comment:
set header_str “Output Header”; # Same line comment

This semicolon is
required!

6NOTE: There is no “/* */”, start/end comment in Tcl,
 just ‘#’ which comments to end of line.

Comments in DC Tcl Scripts

• Comment a line in a Tcl script using the ‘#’
character:

112

Using Variables

• Variables are assigned using the Tcl set
command. To assist in compatibility, DC Tcl also
supports the “=“ construct (in a limited way)

• Variables need to be de-referenced using the “$”
character before the variable name (similar to the
UNIXtm cshell)

• Variables are removed using unset varname

• Print variables using printvar varname

113

dc_shell-t> set clock_period 10
10

dc_shell-t > set search_path “. /u/synopsys/libraries/syn”
. /u/synopsys/libraries/syn

dc_shell-t > echo “clock period = “ $clock_period
clock_period = 10

dc_shell-t > echo clock_period
clock_period

TCL Variable Examples

• Variables are NOT strongly-typed in Tcl

114

dc_shell-t> set_input_delay 5 -clock CLK [all_inputs]
dc_shell-t> set index [lsearch [set a [lsort $l1]] $aValue]
dc_shell-t> set source_files [glob src/*.v]

Nesting Commands

• Nested commands are very useful in Tcl

• Commands are nested using “[“ and “]”:

• command1 [command2 [command3 ...]]

• Inner command is executed, then its result is
passed to the outer command

115

dc_shell-t> source -echo myscript.tcl
dc_shell-t> so -e myscript.tcl; #This works, too!

Abbreviations

• You can abbreviate commands and options
– Use the shortest unique abbreviation

• You can alias commands
– Caveat: The alias can’t be an existing command

116

dc_shell-t> help create*
dc_shell-t> create_clock -period 10 [get_port CLK*]

Matches ports CLK1, CLK2, CLK_FAST, etc.

Display all DC Tcl commands
which begin with “create”

Using Wildcards

• DC Tcl supports the wildcard character ‘*’

• Examples:

117

dc_shell-t> set a 5
5
dc_shell-t> set s ”temp = data[$a]”
temp = data[5]

dc_shell-t> set s {temp = data[$a]}
temp = data[$a]

$a is substituted with its value!

“temp = data[$a]” is literal text

Quoting - “ ”vs. { } in Tcl

• Use backslash (\) to escape individual characters
• Two ways of quoting text in Tcl:

– Using “ and ” - weak quoting because variable, command,
and backslash substitution will still occur

– Using { and } - rigid quoting because no substitutions will
occur

• Examples:

118

dc_shell-t> set l1 {el1 el2 el3};
dc_shell-t> set l2 “el1 el2 el3”; #Command/var subst may occur!

dc_shell-t> set mylist “I1, $netlist, CLK, SEL”; # Wrong!

Using Lists in DC Tcl

• Lists are a key component of Tcl

• Lists can be built as strings separated by
whitespace:

• Don’t use a comma to separate list items, a la
DCSH:

119

dc_shell-t> set period 10.0
10.0
dc_shell-t> set freq [expr ((1 / $period) * 1000)]
100.0

Expressions

• Tcl is command oriented
– few operators are included!

• For numerical operations
– Use the expr command

• For lists
– Use list commands such as list, concat, lappend, etc.

• Example expressions in DC Tcl:

120

if {$period > 10.0} {
 echo “Clock period = $period (exceeds 10 nS)”
} else {
 echo “Clock period = $period”
}

must be on same
line as the else!

set idx 0
set found “false”
while {$found == “false”} {
 if {$pin($idx) == “A”} {
 set found “true”
 echo “Pin A found”
 }
}

Control Flow

• Using the if command:

• Using the while command:

121

for loop example:
for {set cell 0} {$cell < $cell_tot} {incr cell} {
 echo “Cell $cell is $list($cell)”
}

foreach loop example - iterates over elements of a list
set srcfiles [glob src/*.v]
foreach srcfile $srcfiles {
 analyze -f verilog $srcfile
}

switch example (case statement):
switch -exact $x {
 a {incr t1}
 b {incr t2}
 default { echo “Nevermind” }; # must be last
}

More Control Structures

• Examples of for, foreach, and switch:

122

Tcl References

• See a Tcl manual for more details
• We recommend:

– “Practical Programming in Tcl and Tk”
by Brent B. Welch, Prentice Hall

– “Tcl and the Tk Toolkit”
by John Ousterhout, Addison Wesley

– http://www.scriptics.com
– Design Compiler Command-Line Interface Guide

Synopsys Online Documentation, v1999.05

123

Agenda

• Introduce DC Tcl
• Setup files changes
• DC Tcl Shell Basics

DC Extensions to the Tcl language
• Writing Procedures
• Differences between DCSH and DC Tcl
• Converting DCSH scripts to DC Tcl

124

Objects in DC Tcl

• Designs consist of objects
– designs
– cells
– ports
– pins
– clocks
– nets
– etc...

• To select objects
dc_shell-t> set var [get_objtype pattern]
– where objtype is one of:

» cells, clocks, designs, libs, lib_cells, lib_pins, nets,
pins, ports, etc...

– returns a collection handle

dc_shell-t> set dports [get_ports {data[*]}]
{“data[0]” “data[1]” “data[2]”}

125

DC Tcl Collections

• DC commands
– Accept either a collection or a list for arguments
– Always return a collection

• Collections are more efficient than lists

• There are collection commands to:
– Select objects
– Manipulate objects
– Query objects
– Filter objects

126

dc_shell-t> set clks [get_port CLK*]
dc_shell-t> printvar clks
clks = “_sel20”
dc_shell-t> create_clock -period 10 $clks; # Good!

Or...

dc_shell-t> create_clock -period 10 [get_port CLK*]; # Good!

But:

dc_shell-t> create_clock -period 10 “_sel20”; # BAD - won’t work

DC Tcl Collections (cont’d)

• Collections can generally be:
– Assigned to a variable
– Passed to another command (using nested commands)
– Queried
– Filtered

127

dc_shell-t> set data_ports [get_port data[*]]
dc_shell-t> query_objects $data_ports
{“data[0]”, “data[1]”, “data[2]”}
dc_shell-t> set_input_delay 3.0 -clock {CLK} $data_ports
dc_shell-t> query_objects [all_outputs]
{“out1”, “out2”, “out3”}
dc_shell-t> set_output_delay 5.5 -clock $clk [all_outputs]

dc_shell-t> set notalist [query_objects [all_outputs]]
{“data[0]”, “data[1]”, “data[2]”}
dc_shell-t> printvar notalist
alist = “”

DC Tcl Collections (cont’d)

• Typical usage of collections:

• NOTE: query_objects doesn’t return anything!
– Use get_object_name to get the name of an individual

object within a collection

• This will NOT work as intended!

128

Script to loop thru all clocks and print their period
foreach_in_collection clk_itr [all_clocks] {
 set clk_name [get_attribute $clk_itr full_name]
 set clk_per [get_attribute $clk_itr period]
 echo “Clock period for $clk_name is $clk_per”
}

iterator variable

collection(s) you want
to iterate over

body of the loop
to be executed

foreach_in_collection variable collection(s) { body }

Loop iterator
variable

Iterating Over a Collection

• The Tcl foreach command cannot be used for
collections since it operates on lists

• Use DC Tcl’s foreach_in_collection instead:

129

dc_shell-t> set mysel [add_to_collection [get_port “DATA*”] [get_port “CTRL*”]]
dc_shell-t> set mysel [remove_from_collection [all_inputs] [get_port “CLK”]]

Same as DCSH’s all_inputs() - “CLK”

Manipulating Collections

• Add objects from a collection using
add_to_collection

• Remove objects to a collection using
remove_from_collection

• Analogous to using list addition(+) and
subtraction (-) operators in DC

130

dc_shell-t> set fastclks [get_clock “CLK*” -filter “period < 10.0”]4

Filtering Collections

• Similar to filter in DCSH

• Filter “on the fly” with -filter option of many
DC Tcl commands

• More efficient to filter “on the fly” with -filter

• Example:

131

Agenda

• Introduce DC Tcl
• Setup file changes
• DC Tcl Shell Basics
• DC Extensions to the Tcl language

Writing Procedures
• Differences between DCSH and DC Tcl
• Converting DCSH scripts to DC Tcl

132

DC Tcl Procedures

• Allows the user to write reusable, shareable
routines

• Powerful features of procedures:
– Allow you to define your own commands!
– Allow any number of arguments (can define default values)
– Can have variable number of arguments
– Pass arguments by value or reference
– Can have local variables
– Can use any commands or other procedures
– Supports recursion

133

###
PROCEDURE: collection_to_list
ABSTRACT: Converts a collection of objects to a list of
string object names.
RETURNS: a list of object names (strings)
empty list if it can not get_object_name
in each member of the given collection.
SYNTAX: collection_to_list a_handle
###
proc collection_to_list { args } {

This is an example of how to process arguments
 parse_proc_arguments -args $args result_array

Iterate through the collection, building up the return list
 set var [list]
 foreach_in_collection a $result_array(handle) {
 set name [get_object_name $a]
 lappend var $name
 }
 return $var;
}

Example Tcl Procedure

134

#
Define the arguments, command information and usage
#
define_proc_attributes collection_to_list { \

-info "Create a list from collection" \
-define_args {
 {handle "A collection" handle string required} \
}

}

Example Tcl Procedure (cont)

• For help on how to use variable arguments:
dc_shell-t> man define_proc_attributes
dc_shell-t> man parse_proc_arguments

135

Agenda

• Introduce DC Tcl
• Setup file changes
• DC Tcl Shell Basics
• DC Extensions to the Tcl language
• Writing Procedures

Differences between DCSH and DC Tcl
• Converting DCSH scripts to DC Tcl

136

Differences between DCSH and Tcl

DCSH Command Tcl Command Function
read read_file Reads files into dc_shell

read_db same as PrimeTime
list var printvar var List the value for variable var
list -files list_files Lists the files loaded into dc_shell
list -commands help Lists the commands in the shell

list_commands
list -licenses list_licenses Lists the licenses in use
list -variables print_variable_group List variable groups
= set Assignment operator
include source Includes a file
write write Writes out a file

write_file

137

More Differences

• DC-Tcl uses collections instead of lists

• Tcl is CASE SENSITIVE

• Tcl will exit a loop at the line where the exit
command is given

• DCSH will exit a loop after executing the
entire loop body first, no matter where the
exit command is placed

138

More Differences

• You must not alias an existing command in Tcl

• dc_shell_status is not supported in Tcl
– Translator handles most cases
– May require some hand translation

dc_shell-t> set dc_shell_status [command …]

• ‘$’ character not allowed in variable name in Tcl

139

Agenda

• Introduce DC Tcl
• Setup file changes
• DC Tcl Shell Basics
• DC Extensions to the Tcl language
• Writing Procedures!
• Differences between DCSH and DC Tcl

Converting DCSH scripts to DC Tcl

140

DCSH -> DC-Tcl Script Conversion

• Converter is available to ease transition from
dc_shell scripts to Tcl scripts - called dc-transcript

• Run from UNIX command line:

$ dc-transcript dcsh_script tcl_script

• Can convert most scripts - cannot convert all
scripts 100%

• Will flag constructs that it cannot translate

141

DCSH -> DC-Tcl Script Conversion

• By default, all include files are translated,
then inserted into the dc-transcript output
file

• Use the -source_for_include switch to
translate all “include” statements into
“source” statements

• The -source_for_include switch will not
translate the given include scripts

142

Script Conversion Example

set search_path [list \
 /remote/release/1999.05/ \
 libraries/syn}]
set search_path [concat {.} $search_path]

#alias cc create_clock

set target_library {mylib.db}
set link_library [concat {*}
$target_library]
read_file -format db mydesign.db
current_design TOP
link

set_input_delay 5.5
[remove_from_collection \
[all_inputs] CLK]
set_output_delay 3.25 [all_outputs]
create_clock [find port CLK]

compile -incremental

report_timing
exit

search_path = {/remote/release/1999.05/ \
 libraries/syn}
search_path = “.” + search_path

alias cc create_clock

target_library = “mylib.db”
link_library = “*” + target_library
read -format db mydesign.db
current_design TOP
link

set_input_delay 5.5 all_inputs() - CLK
set_output_delay 3.25 all_outputs()
cc find(port, CLK)

compile -incremental

report_timing
exit

143

DC-Tcl Summary

• Native implementation of industry standard Tcl

• Powerful programming language

• Tool provided to convert your old scripts

• Extensions provided to make Tcl even more
powerful with Design Compiler and for
consistency with PrimeTime

