Tcl: TheGood, TheBad, and The Ugly

Gregg D. Lahti
grega.d.lahti @intel.com
Steve J. Brown
sevej.brown@intel .com

Intel Corporation

ABSTRACT

Td israpidly becoming the EDA indudiry's choice of language to facilitate a versatile user interface.
Design Compiler and Primetime now support Tcl asthe primary user interface, and many engineers are
garting to convert to Tcl-based synthesis and Stetic timing.

This paper will show red-world examples, advantages, and pitfals of usng Tcl to drive Synopsystools,
based upon the experience from creating a Tcl Oriented Procedura Synthesis (TOPS) environment.
The examples are aworking tutorial on how Tcl was used to automate various operations and the basic
user errors, misconceptions, and problems that were encountered.

1.0 Overview

Td isshort for the Tool Control Language founded by John Ousterhout in 1987. Tdl satisfiesthe need
for acommon, smple, and easy-to-implement language parser for gpplications. Many gpplicationsin
the EDA world are adopting Tcl asthe de-facto standard for a programmable user interface due to the
ease of integration of the parser into the tool and the ease-of -programming of the language. There have
been many revisons of the language up to today, but the core essentids haven't changed much.

Implementing Td into the Synopsys family findly dlows ared programming interface into a highly
complex tool and reduces the need to shell out to standard UNIX utilities such as sed, Perl, and grep, to
handle items within Design Compiler. Using Tcl enables more complex operations and methods of
handling data than the slandard DCSH could utilize.

This paper uses the 2000.05 release of Design Compiler for the examples. It isour hopes that we can
show fird time and experienced users of Design Compiler how Tdl is used through examples and some
of the main problems of writing Td code and trandation from DCSH to Tcl-based scripts can be
avoided.

2.0 TheGood: Tcl Makes Synthesis Easier

2.1 Naming Convention

Regardless of the language it is necessary to standardize on a naming convention for those particular
languages congtructs. Whether they are signdss, ports, variables, procedures, or functions developing a
clear, concise, and readable convention can save hours of debugging or providing support for
unreadable code. In our Tcl-based synthesis environment we adopted the convention of using P_* for
procedure names and G_* (all caps) for globa variables. Variablesloca to procedures were al lower
cae. A nicety of Tcl isthat one can usethei nf o command to report information about the internals of
the Tdl interpreter, such asligting al the globd variables or user defined procedures.

proc P_addlist {elenent} { % nfo proc P_*
gl obal G_LI ST P_view ist P_addlist
| append G_LI ST $el enent % nfo vars G *

} G_LIST

%
proc P_viewist {nylist} {
upvar 1 $nmylist G LIST
puts “$nylist = $G LI ST”
}

Defined Procedures info Command Results

SNUG Boston 2000 2 Tdl: The Good, The Bad, and The Ugly

The above example shows how to ligt al the defined procedures and global variables adhering to the
naming convention using thei nf o command. The Synopsys hel p command can aso be used to provide
information about the procedures in much the same way asi nf o if the—ver bose sSwitchisincluded. A
more detailed description of command parameters and usage is displayed providing the
define_proc_attributes command has been used asexplained in section 2.3.

2.2 Procedures

Td procedures were the basis for our Tcl synthesis environment, they alow the grouping of one or more
commands alowing a natura modularization of code. Within Tcl dl variables set outsde a procedure
are globa, while variables set within procedures are locd to the procedure and only exist during the
execution of the procedure. Variables can be made available to commands outside the procedure by
using thegl obal or upvar commands. Tcl dlowsthe passng of variables to procedures by reference
using theupvar command. Procedures alow the setting of default and variable number of arguments,
which is demondrated within the next example.

proc Pass {{argl foo} {arg2 bar} args} { %Pass
puts “argl=$argl, arg2=%$arg2, args=$%args” argl=foo, arg2=bar, args=
} %Pass the
argl=t he, arg2=bar, args=
%Pass the good bad ugly
argl= the, arg2= good, args= bad ugly
Procedure Using a Procedure

Making globd variables vigble within a procedure is accomplished by using the globa command. The
upvar command in thisexample is used to passthe variable list to thevi ew i st procedure by name

instead of by vaue.

proc Addlist {element} {
gl obal i st
| append |ist $el ement

}

proc Viewmist {mylist} {
upvar 1 $nylist list
puts “$nylist = $list”
}

%Addl i st gunfighter

gunfi ghter

%Addl i st outl aw
gunfighter outlaw
%/iewist |ist

list = gunfighter outlaw

Procedure

2.3 Documenting User Procedures

Procedure Results

Synopsys uses attributes on procedures to provide help or information about the procedure. This
feature can be exploited further in user-defined procedures, alowing help information to be displayed
usng thehel p P_proc command in Design Compiler. To setup the attribute, the

SNUG Boston 2000 3

Tdl: The Good, The Bad, and The Ugly

define_proc_attribute command is used with the gppropriate hep string and any defined arguments
that are required for the procedure. The following exampleistheinfo linefor theP_get _Ii cense
procedure set by the def i ne_proc_at tri but e that accepts only one argument for the license name.

define_proc_attributes P_get_license \ dc_shell-t> help —v P_get_license
-info "TOPS: Procedure to get a license" \ P_get _license #TOPS: Procedure to get a
-define_args { l'i cense
{In "license name" I n string required} I'n (I'icense nanme)
} dc_shel | -t >
Procedure Command Results
24 Variables

Td variables are evduated as drings in the language. Thisis very different than other programming
languages such as C or Perl. Since variables are evauated as strings within Tcl, so the concept of types
(integer, Boolean, etc) is not available in the Tcl language, but Boolean operations can be performed on
grings. Variables are dways local in scope to the procedure or main script.

(Referencing variablesin DCSH is automatic, thereisno $ for evduation. |If the variable was declared
(e.g. foo = junk) and then referenced (e.g. goo = foo) goo would be set to “junk”. If avariable was set
to anonvariable, then it is treated as a string and no error occurs (e.g. bletch = barf) then the variable
gets assigned the string occurs (e.g. bletch = barf) then the variable gets assigned the string “ barf”.

In DCSH, variables that weren't declared could be referenced without errors. In Tdl, referencing a
variable that hasn’t been declared will result in an error. Thisis somewhat annoying and will usualy
crash any converted DCSH scripts using the Synopsys transcript programif the variable has not been
declared in thefile or procedure that it isbeing used in. One approach to get around this problemisto
&t the varigble with anull value before using the variable.

;# fist_full _of _dollars isn't declared set fist_full_of_dollars “”
set outlaw $fist_full_of _dollars ;# fist _full _of _dollars declared, no error
set outlaw $fist_full _of _dollars

Fails, fist_full_of _dollarsisnot declared A method of setting NULL variables
In the above example on the lft, the variablefi st _ful | _of _dol | ars was not set and caused an error.
The example shown on the right what will work because the variable gets declared with nothing (anull
vaue) beforeit is evduated in the falowing set command.

However, this method could over write the variable being referenced in another script or procedure
depending upon if the variable was declared globa elsewhere. A sdfer dterndive

SNUG Boston 2000 4 Tdl: The Good, The Bad, and The Ugly

method of determining if avariableis set isto usethei nf o command. Thei nf o command is a pretty
useful item that has alist of modifiers to further define the action of thei nf o command. An exampleto
determineif avariable has been declared is shown in the following example.

if {[info exists for_a_few_ dollars_nore]} {
expr $for_a_few dollars_nore + 1

} else {
set for_a_few dollars_nore 1

}

Using theinfo Command

Either method as described above will work to avoid undeclared variables.

Programming tip: when referring avariable in Td the potentid to error the parser existsif the variable
isnot declared. When in doubt, use the [info exists variable] command to verify if the variadle is
declared. Thisisextremey useful when converting DCSH scriptsto Td with the transcript program.

2.5 Hashesand Associative Arrays

Like Perl, Tdl incorporates the use of associative arrays that use a string as the index or key to the array
eements. Unlike lists, which are stored as alinked list in memory, arrays are stored interndly as hash
tables, which alow each dement of the array to be accessed with rdatively the same cost. Thisis
especialy important when dedling with large data sets where access times may be very large. Arrays
are particularly useful when dealing with complex data structures or for grouping together a set of
related variables. The following examples demondrate the use of arrays.

set nyarray(actor) eastwood Y%set myarray(actor)
set nyarray(tv) rawhide east wood
Y%set myarray(tv)
r awhi de
%
Commands Command Results

More complex data structures such as records can be created, but before we go much further itis
necessary to introduce the ar ray command which returns informeation about the array. Thearr ay
exi sts command returns 1 if the array exists and O otherwise.

array exists myarray Yarray exists nmyarray
1
%

Commands Command Results

SNUG Boston 2000 5 Tdl: The Good, The Bad, and The Ugly

Other array commandsinclude get , nanes, set, size, startsearch, nextel ement, anynore, and
donesear ch Of which only get and nanes will be discussed here. Thearray get command returns an
aternating whitespace separated list of array keys and data (e.g. key datakey data ...), and the ar r ay
nanmes command returns awhitespace separated list of keys within the array.

array get nyarray %array get nyarray
array nanmes myarray actor eastwood tv rawhide
%array names nyarray
actor tv
Commands Command Results

The following example shows how a procedure can be used to encapsulate a data structure and hide the
implementation of the data structure from the user.

proc P_AddMovi e {nane star genre} { %°_AddMovi e {Hang em Hi gh} {Eastwood, Clint}
gl obal novi eGenre novi eSt ar Western
set novi eStar ($nanme) $star Western
set novi eGenre($nanme) $genre %_AddMovi e Unforgiven {Eastwood, Clint} Western
} Western
%_Li st Movi el nfo {Unforgiven {Hang em Hi gh}}
proc P_ListMvielnfo {nmovies} { Title :Hang em Hi gh
gl obal novi eGenre novi eSt ar Star : Eastwood, Clint
foreach name $novies { Genre :Western
puts “Title:$nane”
puts “Star :$novieStar($nanme)” Title :Unforgiven
puts “Genre: $movi eGenre($nane)\ n” Star :Eastwood, Clint
} Genre :Western
}
Declared Procedures Command Reaults

2.6 Regular ExpressonsWith regsub and regexp

Regular expressons did not exist in DCSH . To do any regular expression operations in the Design
Compiler, the user had to exec out to a shell with the info and run Perl, awk, grep, or sed to do the
regular expresson work. InTcl, the regular expression syntax is pretty close to UNIX-style sed or
awk, so the characters used in regular expressions match some of the Tcl language congtructs. This
causes some confusion in the parsing of the code when using regular expressions with the [] and $
characters. When usng these charactersin regular expressons, use quotations or separators such as*”
or {} to group the regular expresson. Remember that grouping with double quotes alows subgtitutions
while grouping with curly braces prevents subgtitutions.

For example, let’suse apiece of the P_get _I i cense procedure listed in section 5.2 that gets the output
of theli st _Iicense into avariable so we can processonit. Inthep_get _I i cense procedure, the

$li censes contains the output of theli st _I i cense command. However, the output from the command
is multi-line and contains some extra text:

SNUG Boston 2000 6 Tdl: The Good, The Bad, and The Ugly

dc_shell-t> list_license dc_shell-t> set licenses [list_Ilicense]

Desi gn- Conpi | er VHDL- Conpi |l er

Li censes in use:
Desi gn- Conpi | er dc_shell -t> set $licenses
VHDL- Conpi | er Desi gn- Conpi | er VHDL- Conpi |l er

dc_shel |l -t>

list_license Command What list_license Really Should Do

What theli st _I i cense command redly should do isreturn alig of licensesin Td ligt form.
Unfortunatdly, thisisn't the case: thel i st _I i cense command isn't varigble friendly and only prints out
the licenses usad to sidout rather than to avariable. To fix thislimitation our script must redirect the
output of the list_license command to afile and then cat the file contentsinto a varigble.

now that we have a TCL variable with the Iist_license output,
strip out the crud that DC uselessly puts in and parse the |ist
regsub {Licenses in use:} $licenses {} licenses;
foreach checkedout _|icense $licenses {

if [string match $checkedout _|license $In] {

set fetch_license O

}

}

Section of P_get_license Procedure

However, the output now contained in the variable i i censes is il multi-line and nesds massaging in
order to use the information. We use ther egsub command in Tdl to grip out the useless header info.
Then we operate on the variable using aforeach, snce the foreach command uses whitespace as a
delimiter between items (remember that tabs, spaces, and carriage returns are defined as whitespace
characters). Thestring mat ch command isused to see if we have dready checked out the license
we' retrying to check out. Why do this extracommand? This extra code is required because the

get _| i cense command is broken and will incorrectly provide an error statusif we try and check out a
license that we dready have. A user shouldn’t care about re-checking out alicense. However, auser
will careif they do not get thelicense. Inthisexample, theregsub and st ri ng mat ch commands have
enabled a programmatica workaround to a Synopsys “feature’.

An example of using the regexp command isour P_proj_insert_buffers script located in section 5.4.
Thegod of this procedure isto find hold violations reported by the report_constraint command and add
in auser-defined cell, such as a buffer, to the end of the path before the violating cell to add hold time.
See section 5.4 for acomplete listing of the code.

In the middle of the code, we use the regexp command to get the instance name of the violator cell and
to get the path hierarchy to the cell.

SNUG Boston 2000 7 Tdl: The Good, The Bad, and The Ugly

Fix all the violations for the violator |ist
foreach reg_cell $all _violator_list {

Get the instance name of the violator
regexp {(.*)/.*} $reg_cell varl var2
set inst_name [file tail $var2];

Get the hierarchy path to the violating register
regexp {(.*)/.*} $var2 varl hier_path

A regexp Example

Note that braces are used to contain the regular expression we wish to operate with.

Programming tip: if you are using specia escaped characters such as\t or \n, put double-quotes “”
around the string so the Tl parser will evaluate the string correctly.

2.7 TimeFunctionsand Filel/O

We vefound it very useful to timestamp specific operations during synthesis to profile time spent in
various functions and ad in determining synthes's bottlenecks. To handle this operation, we use a
procedure to print out pecific information of the hosthame, username, and the current wall-clock time
to the DC console that getslogged to afile.

proc P_tinestanp {} {
set ¢ [clock format [cl ock seconds]];
set h [sh hostnane];
set u [sh whoam];
echo "#TI MESTAMP: " $c " " $h " " $u;
}; # end P_tinmestanp;

Timestamp Procedure

The dock command has multiple arguments for formatting the time output and the time units that can be
used in avariety of ways. Thep_ti nest anp procedure uses two nested clock commands to print the
current time in a pecific format.

Fle 1/O is much more standardized in the Tdl language than it wasin DCSH. Since Design Compiler
lives in amulti-OS environment (UNIX, Windows NT, Linux?), thefi | e operation commandsin Tcl
alow basc file functiondity in a portable environment without knowing the which OSit is running on.
For example, the directory separator for Windowsis\ character, for UNIX it isthe/ character. Your
script can be OS-tolerant if you use the built-in file operations.

set ny_library libs/$ny_lib set ny_library [file join Iibs $my_lib]

Bad Use of Path Declaration Using filejoin for Path Declaration

SNUG Boston 2000 8 Tdl: The Good, The Bad, and The Ugly

In the previous example, using the file join command will figure out which directory separator to use by
the OS. The left example shows a hard-coded form that will bresk on a Windows platform.

There are many file operators that are supported in Tcl that one had to shell out of DCSH with a UNIX
command to emulate. One of the operators that we useintheP_proj _i nsert _buffers isthefile tail
command to get at the trailing component of a pathname.

Programming tip: usethefile arg commandswhen manipulating files or file attributes. They work
wel and are portable across al OS variants.

Accessing filesin Td isgmilar to C in thet it requires that you open and close the file being accessed.
Thefollowing is an example of our P_log_filter which extracts dl warnings, errors and elapsed time
messages from the log file and prints them to asummary file. This example demongtrates the basic Tcl
open, gets, puts, and, and cl ose commands.

In the example below the variable declarations we see that the open command is used to set variables
for the file handes of thefiles being read and written. Thefirg file is being opened with the read only
attribute “r”, and, and the second with the write only attribute “w”. Within the while loop we see the
useof get s with two arguments, the first isthe file handle, and the second is the variable which will
contain the returned line minus the newline. After processing dl of the lines within the log file we see the
use of the put s command which, like the get s command, has two arguments: the file handle and the
gring of text to print. The put s command will gpopend a newline character to the string being written
Thefirg argument to the put s command isleft out which tellsthe put s command to default to stdout.

HEHH AR HARFHURHH AR HH AR HH AR HH AR HH AR HH AR HH AR H AR H BB H AR H BB H B RS SRR TR
usage: P_log_filter {log_path unitnane}

HHBBHHHHHHHHH B BB HAHHH AR BB B HHHHHHH B BB HHHHHH BB R R HHHHHH BB HHHHHH B RHH
proc P_log_filter {log_path design} {

set log_file $log_path/${design}.log

set filter_log file $log_path/${design}.|log.summary;

set error_cnt O; #nunmber of error nessages

set warning_cnt 0; #nunber of warning nessagess

set |ine_cnt 0; #number of line in log file

set el apsed_cnt O; #nunber of el apsed nmessages

set LOG HANDLE [open $log_file r];
set FILT_LOG HANDLE [open $filter_log_file w];

Search for lines with errors and warnings with the wite only attribute
while {[gets $LOG HANDLE |ine] >= 0} {
incr line_cnt 1;
if { [regexp {"Error} $line]} {
regsub Error $line "" new_line
set errors($error_cnt) "line no ${line_cnt}${new_ |ine}"
incr error_cnt 1;
} elseif { [regexp {"Warning} $line]} {
regsub Warning $line "" new_line
set warni ngs($warning_cnt) "line no ${line_cnt}${new_ |ine}"
i ncr warning_cnt 1;

SNUG Boston 2000 9 Tdl: The Good, The Bad, and The Ugly

} elseif { [regexp {El apsed} $line]} {
set el apsed($el apsed_cnt) $line;
incr elapsed_cnt 1;

}
}

Print Errors and Lines in a filtered |og
puts $FILT_LOG HANDLE "There are $error_cnt errors, $warning_cnt warnings";

Print the El apsed messages if any
if {$el apsed_cnt > 0} {
puts $FILT_LOG HANDLE "\ nEl apsed :";
for {set i 0} {$i < $elapsed_cnt} {incr i} {
puts $FILT_LOG HANDLE $el apsed($i)
}
}

Print the errors if any
if {$error_cnt > 0} {
puts $FILT_LOG HANDLE "\ nErrors :";
for {set i 0} {$i < $error_cnt} {incr i} {
puts $FI LT_LOG HANDLE $errors($i);
}
}

Print the warnings if any
if {$warning_cnt > 0} {
puts $FILT_LOG HANDLE "\ nWarnings :";
for {set i 0} {$i < $warning_cnt} {incr i} {
puts $FILT_LOG HANDLE $war ni ngs($i);
}

}
cl ose $FILT_LOG HANDLE;

cl ose $LOG_HANDLE;

TheP_log_filter Procedure

2.8 Sockets (How to Fix the Lack of Tk)

Socketsin Tcl are network-like communication channels based upon TCP. A socket is accessible like
apipe or through an open command, much like afile operation. Sockets become very useful if the need
arises to communi cate between computing machines across a network or to communicate between
programs. Programming sockets rdlies on the client-server modd: a server socket runsin the
background and waits for a client program to start and connect. Communication between the server
and client can be bi-directional.

One good use of socketsis to overcome the missing Tk toolkit for building graphical images. The Tk
toolkit allows a user to easily create custom graphica user interfaces (GUIS). Synopsys did not
integrate the other haf of the Tcl language, Tk, into Design Compiler. However, you can overcome this
huge shortcoming in Design Compiler by writing Td scripts thet utilize sockets for communicetion. The
method to do thiswould be to use a server-sde Tl script that utilizes the built-in Tk toolkit for GUI's
and implements a socket for communication. A Design Compiler Tcl script would then communicate to
the server-side Tl script through the socket connection, passing information back and forth to the
server-side script.

SNUG Boston 2000 10 Tdl: The Good, The Bad, and The Ugly

For example, the following two Tcl scripts could be used to create awindow that displaysinformation
sent from the Design Compiler sesson. Theser ver . t ¢l script builds a frame-per-socket connection
request in the window, so multiple frames of information can be created in the window by establishing
multiple socket connections by the client. Theserver. tcl exampleisusing a hardcoded port of 9996
to communicate through. Remember that any port over 1024 is usable by the user without specia
privileges.

#!/usr/ | ocal /bin/w sh
HHRBHBHHHHHHHBRBHHHHHHH BB HHHHHH B BB B HHHHH BB HHHHHH BB HHHHH SRR R B HBHHHHHH
$1d: server.tcl,v 1.1 2000/06/27 18:40:37 glahti Exp $

HEHHURHH U RS H BB B H UG HHRBH B RS H BB G H U RS H U RS H BB G H BB G H BB G H U RS H BB GH PR HH B RS H PR R SRS H RS

filenane: server.tc
aut hor: Gregg D. Laht
created: 06/ 26/ 00

HEHHURHH U RS H BB B H UG HHRBH B RS H BB G H U RS H U RS H BB G H BB G H BB G H U RS H BB GH PR HH B RS H PR R SRS H RS
description: server socket program builds a wi ndow that we can pass info to

fromDC. New text franmes can be added by creating new sockets

start this script as “wish —f server.tcl 9996”

HEHHURHH U RS H BB B H UG HHRBH B RS H BB G H U RS H U RS H BB G H BB G H BB G H U RS H BB GH PR HH B RS H PR R SRS H RS

proc buildmain {} {
wmtitle . "TOPS Logvi ewer"
wm protocol . WM DELETE_W NDOW { set cl osew ndow 1 }

}

proc buildframe {sock} {
gl obal tfrane
set tframe [frame ".$sock"] ;# Create a text widget to | og the output
set $tframe.log [text $tframe.log -width 80 -height 10 \
-borderwidth 2 -relief raised -setgrid true \
-yscroll conmand {$tfranme.scroll set}]

scrol l bar $tfranme.scroll -command {$tframe.|og yvi ew}
pack $tframe.scroll -side right -fill y

pack $tframe.log -side left -fill both -expand true
pack $tframe -side top -fill both -expand true

}

proc display {sock line} {
gl obal tfrane
.$sock.log insert end $line\n

proc StartServer {port} {
gl obal echo
set echo(rmmin) [socket -server SocketAccept $port]

proc Socket Accept {sock addr port} {
gl obal echo
set echo(addr, $sock) [list $addr $port]
fconfigure $sock -buffering line
fileevent $sock readable [list GetFronClient $sock]
bui | df rame $sock

proc GetFronClient {sock} {
gl obal tframe echo |og

SNUG Boston 2000 11 Tdl: The Good, The Bad, and The Ugly

if {[eof $sock] || [catch {gets $sock line}]} { ;# end of file or wierd

dr op
cl ose $sock
unset echo(addr, $sock)
} else {
if {[string conpare $line "closeit"] == 0} {
Prevent new connections, existing connections stay open
cl ose $echo(main)
} else {
di spl ay $sock $line
}
}
}

HEHHURHH U RS H BB B H UG HHRBH B RS H BB G H U RS H U RS H BB G H BB G H BB G H U RS H BB GH PR HH B RS H PR R SRS H RS
Start of Main program
HHRBHBHHHHHHHBRBHHHHHHH BB HHHHHH B BB B HHHHH BB HHHHHH BB HHHHH SRR R B HBHHHHHH

set port [lindex $argv 0]

if { $port =="" 1} {
puts stdout "Erorr: invalid port! \n";
puts stdout "usage: server.tcl [port]\n"
exit 1;
}
bui | dmai n ;# create & | abel wi ndow
Start Server $port ;# start up server & listen on socket
vwait cl osew ndow ; # handl e events
exit O

Server Socket Script server.tcl

#!'/usr/l ocal/bin/w sh

HHHHHBRBHHHHHHH AR BB HHHHHRB BB HHHHH BB BB HHHHH AR BB HHHH R B BB HHHH BB BB HHHH BB
$1d: client.tcl,v 1.2 2000/06/27 18:43:42 glahti Exp $

BHBHYHYBHBHGHY BB B HG R HHBH GRS HE R H G HS R BH G G BB R R RS R H G Y R R H
filenane: client.tc

aut hor: Gregg D. Laht

created: 06/ 27/ 00

HEHHURHH U RS H BB H U RS H U RS H BB HH U RS H U RS H U RS H B RS H U R G H BB GH U R H BB GH PR R B RS H PR R SRS R S
description: exanple client procedure and commands. Include this in the

DC session or run standal one

HEHHHHHHBHEH B HH R B R B HE R H R R R R R R R

proc Echo_Client {host port} {
set s [socket $host $port]
fconfigure $s -buffering line
return $s
}
exec server.tcl 9996 & ;
set host [info hostnane] ;
set socket [Echo_Client $host 9996] ;
puts $socket "Hello!" ;

start server program

get host nane

open socket

stuff some data to socket

H*H B R H

open anot her socket, get a new text frame
set socket2 [Echo_Client $host 9996] ;# open socket2
puts $socket2 "Hello again!" ;# stuff some data to socket2

Client Socket Script client.tcl

SNUG Boston 2000 12 Tdl: The Good, The Bad, and The Ugly

Theclient.tcl script executes the server script in the background. The server script Sits and waits for
a socket connection to be opened. The client opens the socket by executing the Echo_a i ent procedure
and setting the returned value to avariable called socket. Using the put s commeand will stuff the string
data to the socket. Once the socket is opened at the server end, aframeis built and information passed
to the socket gets printed in the frame.

3.0 TheBad: Tcl QuirksThat Trap Experienced Programmers

3.1 TheUseof “”,{},and]

Braces and quotes alow the separation of lists, characters, and other items within the Tcl language.
These items dlow the parser to group items within the braces or double quotes. The following
examples areidenticad in setting a variable with a string content:

set novie {High Plains Drifter}
set bar “High Plains Drifter”

Example of Using Bracesand Quotes

Using quotes dlow variable subgtitution. Curly braces prevent subgtitutions. This appliesto any
command, variable, and backdash subgtitutions. The next example won't get variable expansion which
will result in the varigble novi e being set to “sbar ™.

set novie {$bar} %set novie {$bar}
$bar
%

Command Command Result

The next example, however, will expand the varidble:

set outlaw {Jose WAl es} Y%set outlaw {Jose Wal es}

set novie “The Qutlaw $outl aw’ Jose Wl es

%set novie “The Qutlaw $outl aw’
The Qutlaw Jose Wl es

%

Commands Command Results

Brackets are very different from the quote and braces. Brackets alow execution of commands, rather
than provide a grouping function. Commands insde the brackets get evauated and executed, with any
results being passed back into the calling line function. Note that the Tcl parser trests entirelinesasa
command group, with any nested brackets getting executed and evauated fird.

SNUG Boston 2000 13 Tdl: The Good, The Bad, and The Ugly

set nystring {Paint Your Wagon} Y%set mystring {Paint Your Wagon}
set line_length [string |l ength $nmystring] Pai nt Your Wagon
%set line_length [string length $nystring]
16
%
Commands Command Results

Programming tip: grouping occurs before subgtitution. The Tcl parser groups first, then executes or
substitutes variables.

3.2 Global Variables

Contrary to conventional C/C++ programming, variables defined at the top level of aTcl program are
not accessible ingde procedures without defining them again in the procedure asa globd varidble. This
annoying feature can cause programmer frustration and countless hours of debugging.

To reference agloba variable within a procedure, declare the variable as gl obal inside the procedure.
Dedlaring aglobd variadle a the top leve of the Td program does nothing.

proc setit { myvar } { Y%setit {Pale Rider}

gl obal mystring Pal e Ri der

set mystring $nyvar Y%printit
} my string is: Pale Rider
proc printint {} { %

gl obal mystring
echo “nystring is: $mystring”

Commands Command Results

Inthisexample, theset it procedure setsthe globd variableto adtring. Theprintit routine accesses
the global variable and printsit to the screen.

Programming tip: globd varigbleswork differently when compared to C/C++ and should aways be
declared with the globa command inside a procedure.

3.3 Stringsand Lists

InTdl, everything is evduated asa string. For example, any mathematica operations require the expr
command to do the actud math operation with the resulting vaue from the expr command formatted
back into a gtring. Strings are the basic eement in Tcl, and there is amultitude of commandsto
manipulate and evauate strings. The string command has an array of operations that can be used to
manipulate strings. For comparing strings, the most reliable command to useisthestring conpare
function.

SNUG Boston 2000 14 Tdl: The Good, The Bad, and The Ugly

3.4 LineTermination

Line terminations are sometimes necessary in helping the Tcl parser understand how to interpret the
command. The line termination command isa semi-colon, “;”. An example of using line termination is
shown in the following example.

DCSHel | -t> set bar [expr 3 * 4] # test % set bar [expr 3 * 4] ;# test multiply
mul t 12
Error: wrong # args: should be “set varNane
?newval ue?”

use error_info for nore info. (CWVD-013)

CausesError intheTcl Parser Doesn’t Break Tcl Par ser

In this example, aline termination character isrequired to Sgnd the Tdl parser that the following could
be interpreted as another line or operation. Otherwise, the comment character and following string will
be interpreted as another argument to the set command. Thisyet another annoyance in using the Tcl
language due to the limited parser and the error message will be cryptic.

Programming tip: put asemi-colon before the comment character (i.e. ;#). Thisdiminatesalot of
debugging headaches and doesn't hurt Tcl code execution.

3.5 Odditiesof Conditionalsand Braces

If you are used to a Kernighan and Ritchie programming style, thenthei f/ el si f /el se programming
congtructsin Tcl won't cause you too many headaches. When doing conditiond programming in Td,
the parser must see a specific brace structure for the € se condition or it will complain and die with a

cryptic warning.

In the left example, the beginning brace “{*“ inthe if congtruct is moved to the second line. Thiswill
break the Tcl parser. The correct congtruct is shown on the right.

set death_valley 1 set death_valley 1
if {$death_valley == 1} if {$death_valley == 1} {
{ echo “death_valley was set to 1\n”
echo “death_valley was set to 1\n” }
}
Incorrect Brace Position for If Construct Correct Bracing for If Construct

The Tdl parser in Design Compiler will complain with avery cryptic warning:

Error: wong # args: no script followi ng “$death_valley == 1" argunent
use error_info for more info. (CMD-013)

Error unknown command
echo “death_valley was set to 1\n”

‘ (CMD-005)

SNUG Boston 2000 15 Tdl: The Good, The Bad, and The Ugly

Holy cow! The error message was long and not very informative to the fact that the beginning brace
“{* ison the next line following the if gatement instead of on the sameline. At least Design Compiler
provided anerror_i nf o command to dump out more info that can be useful for tracing out nasty syntax
errors. However, eventheerror _i nf o command won't tell you exactly what went wrong on the
previous example.

The same problem goes for theel si f and el se conditionds. If the braces aren’t in the right spot, the
Td parser will fail.

set death_valley 1 set death_valley 1

if {$death_valley == 1} { if {$ death_valley == 1} {
echo “death_valley was set to 1\n” echo “death_valley was set to 1\n”

} } else {

el se { echo “death_valley was set to 0\n”
echo “death_valley was set to 0\n” }

}

Incorrect Brace Position for else Construct Correct Bracing for else Construct

In the example on the | &ft, the error message was less verbose and dill vague:

Error: unknown command ‘el se’ (CMD- 005)

Desgn Compiler didn't even offer you an error _i nf o message for thiserror. Just remember that the
Td parser is somewhat limited due to the nature of how it works on lines rather than multiple linesand a
command separating character like other languages. Where you put the braces mattersin the Tcl
parser.

Programming tip: put the beginning braces of the condition & the end of the line containing the
conditiona declaration, put any ending braces from the previous condition at the beginning of the next
line.

4.0 TheUgly: Synopsys-specific Implementations of Tcl

There are items that are needed for synthesis and genera functiondity, but are handled in an odd
method through the Tcl language. Here are some of the weird items of using Synopsys that need more
explanation and examples than what the documentation contains.

4.1 Collections

Collections are not part of the Tcl core language. Collections are Synopsys-specific programming items
that alow attributes of a Synopsys-specific item to be grouped into a single varigble reference, using
amilar Object Oriented Programming concepts to C++ where different items can be grouped together
in acdasslike dement. Synopsys commands generdly return alist of collections rather than a string or

SNUG Boston 2000 16 Tdl: The Good, The Bad, and The Ugly

lig. Thisisimportant to know, since collection items need to be operated on differently than strings or

ligts

Collections are referenced as a string handle and cannot be operated on like alist. Instead, Synopsys-
gpecific commands such asadd_t o_col | ecti on, foreach_i n_col | ecti on, ad renove_col | ecti on
alow operations on the collections. For example, if a design had three input ports, ! k, rst _n, and
capture, theal I _i nput s command returns a collection not alist. To access each item, collection

commands must be used.
% set in_list [all_inputs] % set in_list [all_inputs]
{“clk”, “rst_n", “capture”} {“clk”, “rst_n", “capture”}
% set itenD [lindex $in_list 0] % set itenD [index_collection $in_list 0]
{“clk”, “rst_n", “capture”} {“clk”}
% set foo % set itenD
{“clk”, “rst_n", “capture”} {“clk”}
% %set port_name [get_object_name $itenD]
cl k
% set $port_nanme
cl k

Incorrect Method of Accessing Collections Accessing Collections Correctly

In the left example above, theal | _i nput s command returns a collection, not alist and cannot be
accessed like alist. Notice that the variablei t eno is st with the collection results, rather than the first
item in the collection (or the 0" dement). In the right example, thei ndex_col I ect i on is used to get a
the 0" element of the collection that just happens to be the clock pin. Unfortunately, thei t eno varigble
isaso acollection, so the extra step of assigning the por t _nane variable must incorporate the

get _obj ect _name command on the collection variablei t eno.

Programming tip: accessing collections requires the use of the specid procedures or flag options.
Callectionsare not Tdl lists!

4.2 Attributes

Another important item to remember about collections are that there are many Synopsys-defined
attributes that get “attached” to the itemsin a collection. Attributes help define the item with specid
gynthesis information that Design Compiler can utilize. Attributes are grouped into the following
categories.

cell cl ock design
library net pi n
port read_only reference
List of Synopsys Attributes
SNUG Boston 2000 17 Tdl: The Good, The Bad, and The Ugly

Some dttributes are read-only and set/reset by Design Compiler for informational purposes. Some
attributes may be sat by the user using theset _at t ri but e command. The user can a0 cregate hisgher
own dtributes which can be helpful for tagging items with more information. In the following example,
thereset _nane variableis set with a user-defined attribute caled i s_reset .

set reset_nanme “sysrst”

echo "#RESET-Info: Setting reset attributes on port - $reset_nane";
renove_driving_cell $reset_nane;

set _i deal _net $reset_nane;

set_drive O $reset_nane;

set _false_path -from $reset_nane;

set _attribute $reset_name is_reset true -type Bool ean

Using the set_attribute Command

Thisisasmplified example of setting up areset port on adesign with synthesis parameters and a user
attribute of Boolean type. This attribute can then be used within the synthesis job to so we can handle
the synthes's condraints differently for reset pins.

Programming tip: doing a*“man attribute’” in Design Compiler will list dl Synopsys-defined attributes
that can be utilized.

4.3 Accessing Collections and Attributes

Synopsys has provided access to the contents of collections through the use of sort_col | ecti on,
filter_collection,andforeach_in_coll ection Operaions. Some commands can optionaly passa-
sort or —filter command with an argument to further sort or filter on specific items. The following
shows an example of finding a specific cdl usngthefilter_col I ecti on command:

filter_collection [get_cells *] “ref_nanme == FD1S” ;# find flops called FD1S
in design

Using thefilter_collection Command

The—filter optionin commands acts much likethefilter_col I ecti on command and can be used in
avaiety of gtuations. For example, to find al cellsin the design that are not mapped, the following
command can be used.

set unmapped_cells [get_cells -filter {@s_unmapped == true} "*"];

Using the —filter Command

We can dso reference the user-defined attribute, i s_reset, udngthe-fi | t er command aswdl:

set clk ports [get_ports -filter {@s_clock == true} "*"];

SNUG Boston 2000 18 Tdl: The Good, The Bad, and The Ugly

set rst_ports [get_ports -filter {@s_reset == true} "*"];

Filtering for User Attributes

Theforeach_i n_col | ecti on command is useful for looping through al of the collection items and
operaing on each item set within a collection. A useful procedure to count the number of cdl instances
usng thef oreach_i n_col | ecti on command is shown below.

proc P_proj_cell _cnt {} {
set leaf_cell "";

set cell _list_ptr [filter [find -hier cell "*"] "@s_hierarchical == false \
&& @ef_name !'= \"**logic_O0**\" && @ef_name != \"**|logic_1**\""];
foreach_in_collection entity $cell _list_ptr {

set cell _name [get_object_nanme $entity];
| append | eaf _cell $cell _name
}
return [l length $leaf_cell];
}; # end P_proj_cell_cnt

Counting Célls Example

Inthisexample, thecel | _Ii st _ptr varidble gets set to a collection of cellsthat aren’t hierarchica or
VSS/GND pins. Note that the wildcard character “*” isused to grab dl of the cellsinthe find —hier
command and the use of specid operatorsinthefi|ter command for determining reference names and
if thevdueisahierarchicd reference name. Thef oreach_i n_col | ecti on command operates on the
collection and steps through each dement in the collection and setsthe variable cel | _nane with the cell
name using the get _obj ect _nane command. Thel eaf _cel I variadle gets gppended with the cdll name,
causing the variable to set like alig of items. Findly, thel | engt h command counts the number of items
intheligt (redly cel instances) inthel eaf _cel | variable and returns this number asthe find cdl count.

4.4 Coallections Gotchas

In DCSH programming, it was easy to take alist of items and subtract eements or another list from the
firg lig. For example, alig of al inputs without the clock inputs could be done with the following
command:

in_list = all_inputs() - all_clocks()

DCSH to Get Just Input Signals Without Clocks

In the DCSH example above, getting just the input signas of a design without the clocks was easy to do
by issuing theal | _i nput s() command and subtract theal | _cl ocks() resultfromit. InTd, the
returned argument for commands such asal | _i nputs Or al | _cl ocks isacollection. Unfortunatdly,
Design Compiler or PrimeTime has no single command to add or subtract collections from each other.
Instead, one must operate on the dements within a collection individualy and work with each e ement to

SNUG Boston 2000 19 Tdl: The Good, The Bad, and The Ugly

add or subtract into another collection using theadd_t o_col | ecti on OF renove_from col | ecti on
commands.

Doing the dsch example with Td in Design Compiler or Primetime isn't as easy since both returned
vaues are collections and now we have to remove a collection from a collection. Here would be the
equivdent commandsin Tdl:

set in_list [all_inputs]
foreach_in_collection elenent [all_clocks] {
set in_list [remve_fromcollection $in_list [get_object_name $el enent]]

}

Removing a Collection Within a Collection

In the example above, thein_l i st varidble set by theal | _i nput s command isredly acollection, not a
list. The second command iterates over the collection returned by theal | _cl ocks and alows accessto
each item within the collection. Note that each item in the collection, referenced by the el enent
variable, isdso acollection. The script then removes that collection item from thei n_1 i st using the
remove_from col | ecti on command, accomplishing the remova of the clock pins from our input pins of
the design.

Programming tip: Usetheadd_t o_col | ecti on and renove_from col | ecti on cOmmands when adding
or removing items within acollection. Collections are not lists!

45 Synopsys-specific Commands Which Cause Tcl Torture

In 2000.05, setting variables on the command line of dc_shell using the —x facility must be Tcl-based,
rather than DCSH-based. For example:

dc_shell —-x “G_LI B_NAME=Il si 10k” dc_shell —-x “set G_LIB_NAME | si 10k”

Supportedin 1999.10 Newer method for 2000.05

Another item that deviates from the Tcl language is the use of UNIX style arrow redirection. Synopsys
versions past 1999.10 do not support redirection. Instead, ther edi rect command must be used to
pass any Synopsys specific commands into afile.

report_cell > cell.rpt redirect cell.rpt {report_cell}

Supported in 1999.10 Newer method for 2000.05

Hereis an example of using redirect to anull device smilar to doing a*“> /dev/null” in UNIX.

SNUG Boston 2000 20 Tdl: The Good, The Bad, and The Ugly

gl obal G_TOPS
set G_TOPS(NULL) {/dev/null}; # add el em NULL to gl obal array
set G TOPS(TMP) {/tnp/tops}; # add elem TMP to gl obal array

|If port does not exist, send warning results to bit bucket
redirect $G TOPS(NULL) \
{set testdrst [get_ports -filter {@ort_direction == in} $reset_nane]};

Using theredirect Command

In this example, aglobd varidble cdled G Tors (weusea G_ prefix to Sgnify aglobd variable which
adsin debugging and code readability) is set as an array with the NULL eement set to/ dev/ nul I and
the TMP dement pointing to/ t np/ t ops. The redirect command puts the output caused by the set
command of the results of the sub-executed get _ports command to/ dev/ nul I .

Getting the licenses used causes some extra Tcl code due to a feature in Synopsys 1999.10 and
2000.05 wheretheli st _I i censes procedure returns atext string that cannot be set into avariable.
Instead, some torture in Tcl code is required:

exec touch [eval pid].tnp;

exec rm-rf [eval pid].tnp;

redirect [eval pid].tnp {list_Ilicenses};
set licenses [exec cat [eval pid].tnp];
exec rm-rf [eval pid].tnp;

exec, redirect and eval Example

In the above example, atemporary file is created using the current process ID (pid) of the dc_shell
program. The temporary fileisfirst touched, then removed, and then set with the output of the
list_licenses command. Thelicenses varidbleisthen set with the contents of the temporary file.
Findly, the temporary fileisremoved. Note that there is a double-nested bracket declaration for the
eval andtheexterna cat commands.

Programming tip: discontinue any redirect usage usng the UNIX-style > command. Itis not
supported in 2000.05 and beyond. Some commands aren’t variable-friendly, so redirection to a
temporary file and then back into a variable may be required to get Synopsys command output into a
variable.

5.0 ItemsFor Enhancement

Here slig of someitemsthat could be fixed or added to the Tcl interface that would aid debugging and
synthes's operations.

SNUG Boston 2000 21 Tdl: The Good, The Bad, and The Ugly

1. Fixcommandslikeli st _|icenses, report_constrai nt, €c to return string vaues that
can be assgned to a variable rather than text output to the Design Compiler console. To get
around this problem the Td-tortured user must usether edi r ect command to stuff the
Synopsys (broken) command output to a temporary file and then suck the output back into a
vaiable fromthefile. All this could be fixed by dlowing the output to be set to aTd variddle.

2. A built-in Tdl debugger. Design Compiler and Primetime needs a command line driven
debugger much like the Perl debugger. A nice graphica debugger in Design Vison would be
another good idea. The ability to single-step through sections of code and evauate variables
would be extremely hdpful to overcome Tcl torture.

3. Indudsonaof Tk into the Design Compiler application. Custom GUI’s or enhanced API's
would be a huge benefit for monitoring and control of synthesis jobs. Synopsys did not integrate
Tk into the Design Compiler application which is somewhat like providing a great bottle of wine
without a decent wine glassto put it in: you can drink out of the bottle, but it isn't very degant
and the etiquette vaue is horrible. The Tcl language is not complete without Tk!

4. Ability to show commands being executed from a procedure in the Design Compiler
console. Commands executed ina Tl script or through a source command show up, but they
don’t in aprocedure. This hinders the ability to debug or keep alog of commands executed.

5. Ability to eadly add or subtract collection dements, such as the following syntax:

in_list = expr [[all_inputs] — [all_clocks]]

Thiswould be make programming congructs much easier and diminate alot of Tcl codeto
iterate or index through the collections.

6. Adding a—exanpl e Option to the def i ne_proc_at t ri but es command. Only one—i nf o
option isn't enough for complete documentation of a procedure.

6.0 Useful Miscellaneous Tcl Examples

The TOPS synthesis environment uses many procedures and operations to cregte an easy, powerful,
synthesis environment that can be eadily configured to meet the project requirements. Here are some
useful examples extracted from the TOPS Tcl code.

6.1 Including Proceduresand Scripts

Inthe main TOPS Tcl script, there is the requirement to source particular Tcl code if the script exigtsin
the specified search path. Thisoption is used for over-riding the main functions, such as setting up
clocks or changing compile drategies, on the design unit being synthesized. If acompile script exists
locally, use that one rather than the main compile strategy. To accomplish this, we utilized a procedure
to check if the script exists and then source the script if it isfound. The procedure adso prints a
timestamp and the invoking script’s name to the console that is ussful for debugging or history logging.

SNUG Boston 2000 22 Tdl: The Good, The Bad, and The Ugly

HEHH U BB H U RS H BB B H BB GH U R G H BB G H U RS H BB G R U R R H BB HH U R R H BB HH U R R R BB H PR SRR 7HR
Usage: P_source_if_exists filenane caller
#
This procedure is used to see if a file exists. |If it doesn't, return a zero
caller added to print invoking script's name
HEHH AR HARHHURHH AR HH AR HH AR HH AR HH AR HH AR HH BB H AR HH AR HH AR H AR H PR SRR TR
proc P_source_if_exists {filename caller} {
if {[which $filename] != ""} {
set LOCAL_TI ME_MARK [cl ock seconds];
set full_name [which $filenane];
echo "#$caller: Sourcing $full_nanme";
Source the file in the top-level context
upl evel source $fil enane;
return 1;
} else {
File was not found
return O;

}

}; # end P_source_if_exists

P_source if existsProcedure

6.2 Get License Procedure

To be user friendly and not consume licenses unnecessarily, this procedure is used to check out specific
licenses. The procedure will wait for up to an hour, checking a 60 second intervasif alicense cannot
be obtained. This procedure dso fixes aflaw in Design Compiler wherethe get _I i cense command will
return an error satus if Design Compiler dready hasthe license.

HHBBHHHHHHHHH B BB HAHHH AR BB B HHHHHHH B BB HHHHHH BB R R HHHHHH BB HHHHHH B RHH
Usage: P_get_license HDL- Conpil er

#
This procedure grabs the specified |license. Note that DC gives error
status if we already have the license. Hence, nust determne if we
do have the license first before we actually get it.
Also re-check for the license in 60 second intervals for
1 hour before we exit with an error if we can't get a |license
HHBBHHHHHHHHH B BB HAHHH AR BB B HHHHHHH B BB HHHHHH BB R R HHHHHH BB HHHHHH B RHH
proc P_get _license {In} {
set fetch_license 1
set sleep_val 60; # sleep in seconds we wait for a |license
set max_timeout 60; # nunmber of 60-second waits until we die
First nust determ ne which licenses we have. To do this
we get the output of list_licenses into a TCL variable

#
#
Hack! DC is broke & can't set list_lic output to a variable,

so nmust stuff it to atnp file & read it back in. Use process
#id (pid) in filename as a safer-alternative, touch &rm-rf to
first to be extra safe. Bad Synopsys! Bad Synopsys

exec touch [eval pid].tnp;

exec rm-rf [eval pid].tnp;

redirect [eval pid].tnp {list_Ilicenses}

set licenses [exec cat [eval pid].tnp];

exec rm-rf [eval pid].tnp;

now that we have a TCL variable with the list_|icense output,
strip out the crud that DC uselessly puts in and parse the |ist

SNUG Boston 2000 23 Tdl: The Good, The Bad, and The Ugly

regsub {Licenses in use:} $licenses {} licenses
foreach checkedout _license $licenses {
if [string match $checkedout _|license $In] {
set fetch_license O
}
}
if {$fetch_license == 1} {
set sleep_time O;
set dc_status [get_license $In];
while { ($dc_status == 0) && ($sleep_tinme < $max_timeout) } {
if {$sleep_tinme == 0} {
set current_time [exec date];
echo "#I NFO. waiting for license $In @ $current_time";
}
sh sleep $sl eep_val
set sleep_time [expr $sleep_tine + 1];
set dc_status [get_license $In];
}
if {$dc_status == 0} {
echo "Error: Cannot get license $In after $sleep_tine seconds, dying!"

return O;
} else {
#echo "#I NFO checked out license $In"
return 1;
} else {
#echo "#|I NFO already have |license, continuing along";
return 1;

}

}; # end P_get_license

TheP_get_license Procedure

6.3 Reading Verilog, VHDL, and Sub-Functional Block Procedures

Our design environment isamix of Verilog and VHDL. We a0 utilize top-down as well as bottom-up
compiling strategies. To minimize the license usage for both languages and ded with top-down
compiling strategies, these procedures are used.

proc P_read_vhdl {filenane {libname default}} {
P_get_license "VHDL- Conmpiler";

if {$libname == "default"} {
anal yze -f vhdl $fil enane;
} else {
analyze -library $libnane -f vhdl $fil enane;

}
renove_lic "VHDL- Conpiler";
}; # end P_read_vhdl

TheP_read vhdl Procedure

proc P_read_verilog {filenanme {libname default}} {
P_get_lic "HDL-Conpiler";

if {$libname == "default"} {
analyze -f verilog $filenane;
} else {
analyze -library $libnane -f verilog $fil enane;

SNUG Boston 2000 24 Tdl: The Good, The Bad, and The Ugly

}
renove_lic "HDL-Conpiler";
}; # end P_read_verilog;

TheP_read_verilog Procedure

proc P_read_subfubs {subfubs {libnane default}} {

gl obal G_SRC_PATH,;

Check if any subfubs to read. If none, exit else process |ist;

if {![string match $subfubs ""]} {
set subfub_list [join $subfubs]; # must join it into list first;
echo "SUBFUBS: $subfub_list";
Now parse out each file;
foreach {subfub} $subfub_list {

set dirpath [file dirname $subfub]; # get directory path first;
No directory, use $G _SRC_PATH
if {[string match $dirpath ""] == 1} {
set subfub [file join $G _SRC_PATH $subf ub];
}
switch -exact -- [file extension $subfub] {
.vhd {
if {$libname == "default"} {
P_read_vhdl $subfub;
} else {
P_read_vhdl $subfub $libnane;
}
}
.vhdl {
if {$libname == "default"} {
P_read_vhdl $subfub;
} else {
P_read_vhdl $subfub $libnane;
}
}
v {
if {$libname == "default"} {
P_read_veril og $subfub;
} else {
P_read_veril og $subfub $libnane;
}
}
.db {

echo "#I NFO Readi ng db $subfub";
read_db $subf ub;

}

defaul t {
echo "#I NFO Readi ng db $subfub";
read_db $subf ub;

}

}; # end switch
}; # end foreach
}; # end if
}; # end P_read_subfubs;

TheP_read_subfubsProcedure

SNUG Boston 2000 25 Tdl: The Good, The Bad, and The Ugly

6.4 Thelnsert Buffer Script

On adesign project, we had to fix hold violations manualy rather than letting Synopsys go through an
incremental compilewith theset _fi x_hol d command. We accomplished this task with a procedure to
find any hold time violations usng ther epor t _const rai nt command, get al end-point violations, and
then add in acell of the user’s choosing (usualy a buffer) to the end of the violated path. The procedure
requires the user to passin the cdll type to be inserted, an instance name to call the cell, and the place to
be inserted (scan path, data path, or both paths). This obvioudy isn't the preferred methodology to fix
hold time violations, but it worked well to get the design out of the proverbid fire and provided a good
example of the power of using Tcl in synthess. Credit goesto Doug Hergeatt and Tim Wilson for the
script example.

HHRBHHHHHHHHHBRBHBHHH BB RHHHHH BB HHHHHH R B R B HBHHH BB HHHHHH R BRH
Usage: P_proj_insert_buffers lib_cell_name inst_string fix_hol d_node

#

#

This procedure is used to fix HOLD violations by inserting strategic
buffers in the scan, data or both paths of the design. It is intended
to be invoked pre-layout to reduce the nunber of violations.

HEHH U BB H U RS HURBH B RS H BB G H BB G H U RS H BB G H U R R H BB HH U R R H PR G HHRRH BB HH PR SRR RHS

proc P_proj_insert_buffers {lib_cell_nanme inst_string fix_hold_node} ({

Generate list of violators & filter on VI OLATED

Hack! Must dunp this to a tnp file because the report_constraint

command output can’t be set to a variable! Bad Synopsys! Bad Synopsys
redirect tnp { report_constraint -mn_delay -all };

set violator_list [exec sed -n -e "/VIOLATED/ p" tnp];

sh rmtnp;

Check for no violations

if {$violator_list == ""} {
echo "#INFO No M N violations in current design"
return;

}; # end if

set si_violator_list
set d_violator_Iist

Now filter on "/SI" & create |ist
foreach violator $violator_list {
if [string match */SI $violator] {
set si_violator_list [concat $si_violator_list $violator];
}; # end if
if [string match */D $violator] {
set d_violator_list [concat $d_violator_list $violator];
}; # end if
}; # end foreach

Build the list to fix

if {$fix_hold_nmode == "scan"} {
set all_violator_list $si_violator_|list;
} elseif {$fix_hold_nmpde == "data"} {
set all_violator_list $d_violator_list;
} elseif {$fix_hold_node == "both"} {
set all_violator_list [concat $d_violator_list $si_violator_list];
} else {

echo "ERROR: Incorrect Fix Hold Mode. Please specify scan, data or both"

SNUG Boston 2000 26 Tdl: The Good, The Bad, and The Ugly

}; #end if

Reset cell counter (used to create a unique instance nane
set cell _cnt O;

echo "#I NFO Fixing Hold violations on the violator paths.";

Fix all the violations for the violator |ist
foreach reg_cell $all _violator_list {

Get the instance name of the violator
regexp {(.*)/.*} $reg_cell varl var2
set inst_name [file tail $var2];

Get the hierarchy path to the violating register
regexp {(.*)/.*} $var2 varl hier_path

Increnment the cell counter
set cell_cnt [expr $cell_cnt + 1];

Find everything connected to the pin of this register

set orig_net [all_connected [get_pins $reg_cell]];

Create new instance name (HOLD delay cell)

set new_cell ${inst_name}${inst_string}${cell _cnt};

Create new net name (net inserted between new HOLD cell & register pin)
set new_net ${new_cell}_net;

Di sconnect the orig net & create the new cell & net

di sconnect _net $orig_net $reg_cell

create_cell -instance $hier_path $new cell $lib_cell _nane;
create_net -instance $hier_path $new_net;

Add the hierarchy path to the new net & cell vars
set new_net [file join $hier_path $new_net];

set new_cell_in [file join $hier_path ${new_cell}/A]
set new_cell _out [file join $hier_path ${new cell}/(];

Connect the nets

connect _net $new_net $reg_cell

connect _net $new_net $new_cell _out;

connect _net $orig_net $new_cell _in;
}; # end foreach

echo "#I NFO. Added $cell_cnt HOLD cells to the design.";
}; # end proc

document the procedure

define_proc_attributes P_proj_insert_buffers \
-info "PRQOJ: Procedure to fix HOLD violations inserting strategic buffers" \
-define_args {

{lib_cell _name "Library Cell Name to insert" lib_cell_name string required}

{inst_string "Instance String to insert in the new cell" inst_string string
required}

{fix_hold_rmpde "Fix Hold Mdde: scan, data, or both" fix_hold_npde string
required}

}
P_proj_insert_buffers Script Example

SNUG Boston 2000 27 Tdl: The Good, The Bad, and The Ugly

7.0 Conclusion

Td isavery powerful language that enhances the synthesistasks. Tcl does have quirks and odditiesin
its usage and syntax that conflict with more mainstream programming languages. In addition, the
Synopsys-specific Tdl festures create some confusion in implementing Tcl. This paper hopefully has
shown some of the mgor pitfalls that even experienced programmers face and it has provided red-
world example code.

The TOPS synthesis environment was a joint effort by Gregg Lahti, Steve Brown, Tim Wilson, Rodney
Pesavento, and Doug Hergatt (CX Design). This paper couldn’t have been accomplished without the
mongter-szed effort from Doug. Doug’ s expertise in design and synthesis provided greet insght into
solving many of the basic problems faced when the TOPS synthesis environment was crested. He was
a0 the voice of sanity and reason when we couldn’t agree on methodology or direction.

8.0 Reference
Ousterhout, John K., Td and the Tk Toolkit, Addison-Wesley, 1994. ISBN: 020163337X

Welch, Brent B., Practicd Programming in Td & Tk, Second Edition, Prentice Hall, 1997. 1SBN O-
13616830-2

Nelson, Christopher, Tcl/Tk Programmer’ s Reference, Osbourne/McGraw Hill, 2000. 1SBN 0-07-
212004-5

Td Deveoper Exchange Website: http://gjubasol utions.com

Synopsys Solvnet Website: http://solvnet.synopsys.com/cgi-bin/ASP/solvnet/sgn-on

Wilson, Tim L, and Pesavento, Rodney, Using Td to Implement an Efficient Synthes's Environment
(TOPS), Boston Synopsys Users Group Conference, September 2000

SNUG Boston 2000 28 Tdl: The Good, The Bad, and The Ugly

