
Tcl: The Good, The Bad, and The Ugly

Gregg D. Lahti
gregg.d.lahti@intel.com

Steve J. Brown
steve.j.brown@intel.com

Intel Corporation

ABSTRACT

Tcl is rapidly becoming the EDA industry's choice of language to facilitate a versatile user interface.
Design Compiler and Primetime now support Tcl as the primary user interface, and many engineers are
starting to convert to Tcl-based synthesis and static timing.

This paper will show real-world examples, advantages, and pitfalls of using Tcl to drive Synopsys tools,
based upon the experience from creating a Tcl Oriented Procedural Synthesis (TOPS) environment.
The examples are a working tutorial on how Tcl was used to automate various operations and the basic
user errors, misconceptions, and problems that were encountered.

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly2

1.0 Overview
Tcl is short for the Tool Control Language founded by John Ousterhout in 1987. Tcl satisfies the need
for a common, simple, and easy-to-implement language parser for applications. Many applications in
the EDA world are adopting Tcl as the de-facto standard for a programmable user interface due to the
ease of integration of the parser into the tool and the ease-of-programming of the language. There have
been many revisions of the language up to today, but the core essentials haven’t changed much.

Implementing Tcl into the Synopsys family finally allows a real programming interface into a highly
complex tool and reduces the need to shell out to standard UNIX utilities such as sed, Perl, and grep, to
handle items within Design Compiler. Using Tcl enables more complex operations and methods of
handling data than the standard DCSH could utilize.

This paper uses the 2000.05 release of Design Compiler for the examples. It is our hopes that we can
show first time and experienced users of Design Compiler how Tcl is used through examples and some
of the main problems of writing Tcl code and translation from DCSH to Tcl-based scripts can be
avoided.

2.0 The Good: Tcl Makes Synthesis Easier

2.1 Naming Convention

Regardless of the language it is necessary to standardize on a naming convention for those particular
languages constructs. Whether they are signals, ports, variables, procedures, or functions developing a
clear, concise, and readable convention can save hours of debugging or providing support for
unreadable code. In our Tcl-based synthesis environment we adopted the convention of using P_* for
procedure names and G_* (all caps) for global variables. Variables local to procedures were all lower
case. A nicety of Tcl is that one can use the info command to report information about the internals of
the Tcl interpreter, such as listing all the global variables or user defined procedures.

proc P_addlist {element} {
 global G_LIST
 lappend G_LIST $element
}

proc P_viewlist {mylist} {
 upvar 1 $mylist G_LIST
 puts “$mylist = $G_LIST”
}

%info proc P_*
P_viewlist P_addlist
%info vars G_*
G_LIST
%

Defined Procedures info Command Results

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly3

The above example shows how to list all the defined procedures and global variables adhering to the
naming convention using the info command. The Synopsys help command can also be used to provide
information about the procedures in much the same way as info if the –verbose switch is included. A
more detailed description of command parameters and usage is displayed providing the
define_proc_attributes command has been used as explained in section 2.3.

2.2 Procedures

Tcl procedures were the basis for our Tcl synthesis environment, they allow the grouping of one or more
commands allowing a natural modularization of code. Within Tcl all variables set outside a procedure
are global, while variables set within procedures are local to the procedure and only exist during the
execution of the procedure. Variables can be made available to commands outside the procedure by
using the global or upvar commands. Tcl allows the passing of variables to procedures by reference
using the upvar command. Procedures allow the setting of default and variable number of arguments,
which is demonstrated within the next example.

proc Pass {{arg1 foo} {arg2 bar} args} {
 puts “arg1=$arg1, arg2=$arg2, args=$args”
}

%Pass
arg1=foo, arg2=bar, args=
%Pass the
arg1=the, arg2=bar, args=
%Pass the good bad ugly
arg1= the, arg2= good, args= bad ugly

Procedure Using a Procedure

Making global variables visible within a procedure is accomplished by using the global command. The
upvar command in this example is used to pass the variable list to the viewlist procedure by name
instead of by value.

proc Addlist {element} {
 global list
 lappend list $element
}

proc Viewlist {mylist} {
 upvar 1 $mylist list
 puts “$mylist = $list”
}

%Addlist gunfighter
gunfighter
%Addlist outlaw
gunfighter outlaw
%Viewlist list
list = gunfighter outlaw

Procedure Procedure Results

2.3 Documenting User Procedures

Synopsys uses attributes on procedures to provide help or information about the procedure. This
feature can be exploited further in user-defined procedures, allowing help information to be displayed
using the help P_proc command in Design Compiler. To setup the attribute, the

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly4

define_proc_attribute command is used with the appropriate help string and any defined arguments
that are required for the procedure. The following example is the info line for the P_get_license
procedure set by the define_proc_attribute that accepts only one argument for the license name.

define_proc_attributes P_get_license \
 -info "TOPS: Procedure to get a license" \
 -define_args {
 {ln "license name" ln string required}
}

dc_shell-t> help –v P_get_license
P_get_license #TOPS: Procedure to get a
license
 ln (license name)
dc_shell-t>

Procedure Command Results

2.4 Variables

Tcl variables are evaluated as strings in the language. This is very different than other programming
languages such as C or Perl. Since variables are evaluated as strings within Tcl, so the concept of types
(integer, Boolean, etc) is not available in the Tcl language, but Boolean operations can be performed on
strings. Variables are always local in scope to the procedure or main script.

(Referencing variables in DCSH is automatic, there is no $ for evaluation. If the variable was declared
(e.g. foo = junk) and then referenced (e.g. goo = foo) goo would be set to “junk”. If a variable was set
to a non-variable, then it is treated as a string and no error occurs (e.g. bletch = barf) then the variable
gets assigned the string occurs (e.g. bletch = barf) then the variable gets assigned the string “barf”.

In DCSH, variables that weren’t declared could be referenced without errors. In Tcl, referencing a
variable that hasn’t been declared will result in an error. This is somewhat annoying and will usually
crash any converted DCSH scripts using the Synopsys transcript program if the variable has not been
declared in the file or procedure that it is being used in. One approach to get around this problem is to
set the variable with a null value before using the variable.

;# fist_full_of_dollars isn’t declared
set outlaw $fist_full_of_dollars

set fist_full_of_dollars “”
;# fist_full_of_dollars declared, no error
set outlaw $fist_full_of_dollars

Fails, fist_full_of_dollars is not declared A method of setting NULL variables

In the above example on the left, the variable fist_full_of_dollars was not set and caused an error.
The example shown on the right what will work because the variable gets declared with nothing (a null
value) before it is evaluated in the following set command.

However, this method could over write the variable being referenced in another script or procedure
depending upon if the variable was declared global elsewhere. A safer alternative

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly5

method of determining if a variable is set is to use the info command. The info command is a pretty
useful item that has a list of modifiers to further define the action of the info command. An example to
determine if a variable has been declared is shown in the following example.

if {[info exists for_a_few_dollars_more]} {
expr $for_a_few_dollars_more + 1

} else {
set for_a_few_dollars_more 1

}

Using the info Command

Either method as described above will work to avoid undeclared variables.

Programming tip: when referring a variable in Tcl the potential to error the parser exists if the variable
is not declared. When in doubt, use the [info exists variable] command to verify if the variable is
declared. This is extremely useful when converting DCSH scripts to Tcl with the transcript program.

2.5 Hashes and Associative Arrays

Like Perl, Tcl incorporates the use of associative arrays that use a string as the index or key to the array
elements. Unlike lists, which are stored as a linked list in memory, arrays are stored internally as hash
tables, which allow each element of the array to be accessed with relatively the same cost. This is
especially important when dealing with large data sets where access times may be very large. Arrays
are particularly useful when dealing with complex data structures or for grouping together a set of
related variables. The following examples demonstrate the use of arrays.

 set myarray(actor) eastwood
 set myarray(tv) rawhide

%set myarray(actor)
eastwood
%set myarray(tv)
rawhide
%

Commands Command Results

More complex data structures such as records can be created, but before we go much further it is
necessary to introduce the array command which returns information about the array. The array
exists command returns 1 if the array exists and 0 otherwise.

 array exists myarray %array exists myarray
1
%

Commands Command Results

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly6

Other array commands include get, names, set, size, startsearch, nextelement, anymore, and
donesearch of which only get and names will be discussed here. The array get command returns an
alternating whitespace separated list of array keys and data (e.g. key data key data …), and the array
names command returns a whitespace separated list of keys within the array.

array get myarray
array names myarray

%array get myarray
actor eastwood tv rawhide
%array names myarray
actor tv

Commands Command Results

The following example shows how a procedure can be used to encapsulate a data structure and hide the
implementation of the data structure from the user.

proc P_AddMovie {name star genre} {
 global movieGenre movieStar
 set movieStar($name) $star
 set movieGenre($name) $genre
}

proc P_ListMovieInfo {movies} {
 global movieGenre movieStar
 foreach name $movies {
 puts “Title:$name”
 puts “Star :$movieStar($name)”
 puts “Genre:$movieGenre($name)\n”
 }
}

%P_AddMovie {Hang em High} {Eastwood, Clint}
Western
Western
%P_AddMovie Unforgiven {Eastwood, Clint} Western
Western
%P_ListMovieInfo {Unforgiven {Hang em High}}
Title :Hang em High
Star :Eastwood, Clint
Genre :Western

Title :Unforgiven
Star :Eastwood, Clint
Genre :Western

Declared Procedures Command Results

2.6 Regular Expressions With regsub and regexp

Regular expressions did not exist in DCSH . To do any regular expression operations in the Design
Compiler, the user had to exec out to a shell with the info and run Perl, awk, grep, or sed to do the
regular expression work. In Tcl, the regular expression syntax is pretty close to UNIX-style sed or
awk, so the characters used in regular expressions match some of the Tcl language constructs. This
causes some confusion in the parsing of the code when using regular expressions with the [] and $
characters. When using these characters in regular expressions, use quotations or separators such as “”
or {} to group the regular expression. Remember that grouping with double quotes allows substitutions
while grouping with curly braces prevents substitutions.

For example, let’s use a piece of the P_get_license procedure listed in section 5.2 that gets the output
of the list_license into a variable so we can process on it. In the P_get_license procedure, the
$licenses contains the output of the list_license command. However, the output from the command
is multi-line and contains some extra text:

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly7

dc_shell-t> list_license

Licenses in use:
 Design-Compiler
 VHDL-Compiler

dc_shell-t>

dc_shell-t> set licenses [list_license]
Design-Compiler VHDL-Compiler

dc_shell-t> set $licenses
Design-Compiler VHDL-Compiler

list_license Command What list_license Really Should Do

What the list_license command really should do is return a list of licenses in Tcl list form.
Unfortunately, this isn’t the case: the list_license command isn’t variable friendly and only prints out
the licenses used to stdout rather than to a variable. To fix this limitation our script must redirect the
output of the list_license command to a file and then cat the file contents into a variable.

now that we have a TCL variable with the list_license output,
strip out the crud that DC uselessly puts in and parse the list
regsub {Licenses in use:} $licenses {} licenses;
foreach checkedout_license $licenses {
 if [string match $checkedout_license $ln] {
 set fetch_license 0;
 }

 }

Section of P_get_license Procedure

However, the output now contained in the variable $licenses is still multi-line and needs massaging in
order to use the information. We use the regsub command in Tcl to strip out the useless header info.
Then we operate on the variable using a foreach, since the foreach command uses whitespace as a
delimiter between items (remember that tabs, spaces, and carriage returns are defined as whitespace
characters). The string match command is used to see if we have already checked out the license
we’re trying to check out. Why do this extra command? This extra code is required because the
get_license command is broken and will incorrectly provide an error status if we try and check out a
license that we already have. A user shouldn’t care about re-checking out a license. However, a user
will care if they do not get the license. In this example, the regsub and string match commands have
enabled a programmatical workaround to a Synopsys “feature”.

An example of using the regexp command is our P_proj_insert_buffers script located in section 5.4.
The goal of this procedure is to find hold violations reported by the report_constraint command and add
in a user-defined cell, such as a buffer, to the end of the path before the violating cell to add hold time.
See section 5.4 for a complete listing of the code.

In the middle of the code, we use the regexp command to get the instance name of the violator cell and
to get the path hierarchy to the cell.

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly8

 # Fix all the violations for the violator list
 foreach reg_cell $all_violator_list {

 # Get the instance name of the violator
 regexp {(.*)/.*} $reg_cell var1 var2
 set inst_name [file tail $var2];

 # Get the hierarchy path to the violating register
 regexp {(.*)/.*} $var2 var1 hier_path
 ….

A regexp Example

Note that braces are used to contain the regular expression we wish to operate with.

Programming tip: if you are using special escaped characters such as \t or \n, put double-quotes “”
around the string so the Tcl parser will evaluate the string correctly.

2.7 Time Functions and File I/O

We’ve found it very useful to timestamp specific operations during synthesis to profile time spent in
various functions and aid in determining synthesis bottlenecks. To handle this operation, we use a
procedure to print out specific information of the hostname, username, and the current wall-clock time
to the DC console that gets logged to a file.

proc P_timestamp {} {
 set c [clock format [clock seconds]];
 set h [sh hostname];
 set u [sh whoami];
 echo "#TIMESTAMP: " $c " " $h " " $u;
}; # end P_timestamp;

Timestamp Procedure

The clock command has multiple arguments for formatting the time output and the time units that can be
used in a variety of ways. The P_timestamp procedure uses two nested clock commands to print the
current time in a specific format.

File I/O is much more standardized in the Tcl language than it was in DCSH. Since Design Compiler
lives in a multi-OS environment (UNIX, Windows NT, Linux?), the file operation commands in Tcl
allow basic file functionality in a portable environment without knowing the which OS it is running on.
For example, the directory separator for Windows is \ character, for UNIX it is the / character. Your
script can be OS-tolerant if you use the built-in file operations.

set my_library libs/$my_lib set my_library [file join libs $my_lib]

Bad Use of Path Declaration Using file join for Path Declaration

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly9

In the previous example, using the file join command will figure out which directory separator to use by
the OS. The left example shows a hard-coded form that will break on a Windows platform.

There are many file operators that are supported in Tcl that one had to shell out of DCSH with a UNIX
command to emulate. One of the operators that we use in the P_proj_insert_buffers is the file tail
command to get at the trailing component of a pathname.

Programming tip: use the file arg commands when manipulating files or file attributes. They work
well and are portable across all OS variants.

Accessing files in Tcl is similar to C in that it requires that you open and close the file being accessed.
The following is an example of our P_log_filter which extracts all warnings, errors and elapsed time
messages from the log file and prints them to a summary file. This example demonstrates the basic Tcl
open, gets, puts, and, and close commands.

In the example below the variable declarations we see that the open command is used to set variables
for the file handles of the files being read and written. The first file is being opened with the read only
attribute “r”, and, and the second with the write only attribute “w”. Within the while loop we see the
use of gets with two arguments, the first is the file handle, and the second is the variable which will
contain the returned line minus the newline. After processing all of the lines within the log file we see the
use of the puts command which, like the gets command, has two arguments: the file handle and the
string of text to print. The puts command will append a newline character to the string being written.
The first argument to the puts command is left out which tells the puts command to default to stdout.

###
usage: P_log_filter {log_path unitname}
###
proc P_log_filter {log_path design} {
set log_file $log_path/${design}.log;
set filter_log_file $log_path/${design}.log.summary;
set error_cnt 0; #number of error messages
set warning_cnt 0; #number of warning messagess
set line_cnt 0; #number of line in log file
set elapsed_cnt 0; #number of elapsed messages

set LOG_HANDLE [open $log_file r];
set FILT_LOG_HANDLE [open $filter_log_file w];

Search for lines with errors and warnings with the write only attribute
while {[gets $LOG_HANDLE line] >= 0} {
 incr line_cnt 1;
 if { [regexp {^Error} $line]} {
 regsub Error $line "" new_line;
 set errors($error_cnt) "line no ${line_cnt}${new_line}";
 incr error_cnt 1;
 } elseif { [regexp {^Warning} $line]} {
 regsub Warning $line "" new_line;
 set warnings($warning_cnt) "line no ${line_cnt}${new_line}";
 incr warning_cnt 1;

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly10

 } elseif { [regexp {Elapsed} $line]} {
 set elapsed($elapsed_cnt) $line;
 incr elapsed_cnt 1;
 }
 }

 # Print Errors and Lines in a filtered log
 puts $FILT_LOG_HANDLE "There are $error_cnt errors, $warning_cnt warnings";

 # Print the Elapsed messages if any
 if {$elapsed_cnt > 0} {
 puts $FILT_LOG_HANDLE "\nElapsed :";
 for {set i 0} {$i < $elapsed_cnt} {incr i} {
 puts $FILT_LOG_HANDLE $elapsed($i)
 }
 }
 # Print the errors if any
 if {$error_cnt > 0} {
 puts $FILT_LOG_HANDLE "\nErrors :";
 for {set i 0} {$i < $error_cnt} {incr i} {
 puts $FILT_LOG_HANDLE $errors($i);
 }
 }
 # Print the warnings if any
 if {$warning_cnt > 0} {
 puts $FILT_LOG_HANDLE "\nWarnings :";
 for {set i 0} {$i < $warning_cnt} {incr i} {
 puts $FILT_LOG_HANDLE $warnings($i);
 }
 }
 close $FILT_LOG_HANDLE;
 close $LOG_HANDLE;
}

The P_log_filter Procedure

2.8 Sockets (How to Fix the Lack of Tk)

Sockets in Tcl are network-like communication channels based upon TCP. A socket is accessible like
a pipe or through an open command, much like a file operation. Sockets become very useful if the need
arises to communicate between computing machines across a network or to communicate between
programs. Programming sockets relies on the client-server model: a server socket runs in the
background and waits for a client program to start and connect. Communication between the server
and client can be bi-directional.

One good use of sockets is to overcome the missing Tk toolkit for building graphical images. The Tk
toolkit allows a user to easily create custom graphical user interfaces (GUIs). Synopsys did not
integrate the other half of the Tcl language, Tk, into Design Compiler. However, you can overcome this
huge shortcoming in Design Compiler by writing Tcl scripts that utilize sockets for communication. The
method to do this would be to use a server-side Tcl script that utilizes the built-in Tk toolkit for GUI’s
and implements a socket for communication. A Design Compiler Tcl script would then communicate to
the server-side Tcl script through the socket connection, passing information back and forth to the
server-side script.

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly11

For example, the following two Tcl scripts could be used to create a window that displays information
sent from the Design Compiler session. The server.tcl script builds a frame-per-socket connection
request in the window, so multiple frames of information can be created in the window by establishing
multiple socket connections by the client. The server.tcl example is using a hardcoded port of 9996
to communicate through. Remember that any port over 1024 is usable by the user without special
privileges.

#!/usr/local/bin/wish
##
$Id: server.tcl,v 1.1 2000/06/27 18:40:37 glahti Exp $
##
filename: server.tcl
author: Gregg D. Lahti
created: 06/26/00
##
description: server socket program, builds a window that we can pass info to
from DC. New text frames can be added by creating new sockets
start this script as “wish –f server.tcl 9996”
##

proc buildmain {} {
wm title . "TOPS Logviewer"
wm protocol . WM_DELETE_WINDOW { set closewindow 1 }

}

proc buildframe {sock} {
global tframe
set tframe [frame ".$sock"] ;# Create a text widget to log the output
set $tframe.log [text $tframe.log -width 80 -height 10 \

-borderwidth 2 -relief raised -setgrid true \
-yscrollcommand {$tframe.scroll set}]

scrollbar $tframe.scroll -command {$tframe.log yview}
pack $tframe.scroll -side right -fill y
pack $tframe.log -side left -fill both -expand true
pack $tframe -side top -fill both -expand true

}

proc display {sock line} {
global tframe
.$sock.log insert end $line\n

}

proc StartServer {port} {
global echo
set echo(main) [socket -server SocketAccept $port]

}

proc SocketAccept {sock addr port} {
global echo
set echo(addr,$sock) [list $addr $port]
fconfigure $sock -buffering line
fileevent $sock readable [list GetFromClient $sock]
buildframe $sock

}

proc GetFromClient {sock} {
global tframe echo log

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly12

if {[eof $sock] || [catch {gets $sock line}]} { ;# end of file or wierd
drop

close $sock
unset echo(addr,$sock)

} else {
if {[string compare $line "closeit"] == 0} {

Prevent new connections, existing connections stay open.
close $echo(main)

} else {
display $sock $line

}
}

}

##
Start of Main program
##

set port [lindex $argv 0]
if { $port == "" } {

puts stdout "Erorr: invalid port! \n";
puts stdout "usage: server.tcl [port]\n";
exit 1;

}
buildmain ;# create & label window
StartServer $port ;# start up server & listen on socket
vwait closewindow ;# handle events
exit 0

Server Socket Script server.tcl

#!/usr/local/bin/wish
##
$Id: client.tcl,v 1.2 2000/06/27 18:43:42 glahti Exp $
##
filename: client.tcl
author: Gregg D. Lahti
created: 06/27/00
##
description: example client procedure and commands. Include this in the
DC session or run standalone.
##

proc Echo_Client {host port} {
set s [socket $host $port]
fconfigure $s -buffering line
return $s

}
exec server.tcl 9996 & ;# start server program
set host [info hostname] ;# get host name
set socket [Echo_Client $host 9996] ;# open socket
puts $socket "Hello!" ;# stuff some data to socket

open another socket, get a new text frame
set socket2 [Echo_Client $host 9996] ;# open socket2
puts $socket2 "Hello again!" ;# stuff some data to socket2

Client Socket Script client.tcl

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly13

The client.tcl script executes the server script in the background. The server script sits and waits for
a socket connection to be opened. The client opens the socket by executing the Echo_Client procedure
and setting the returned value to a variable called socket. Using the puts command will stuff the string
data to the socket. Once the socket is opened at the server end, a frame is built and information passed
to the socket gets printed in the frame.

3.0 The Bad: Tcl Quirks That Trap Experienced Programmers

3.1 The Use of “”, {}, and []

Braces and quotes allow the separation of lists, characters, and other items within the Tcl language.
These items allow the parser to group items within the braces or double quotes. The following
examples are identical in setting a variable with a string content:

set movie {High Plains Drifter}
set bar “High Plains Drifter”

Example of Using Braces and Quotes

Using quotes allow variable substitution. Curly braces prevent substitutions. This applies to any
command, variable, and backslash substitutions. The next example won’t get variable expansion which
will result in the variable movie being set to “$bar”.

set movie {$bar} %set movie {$bar}
$bar
%

Command Command Result

The next example, however, will expand the variable:

 set outlaw {Jose Wales}
 set movie “The Outlaw $outlaw”

%set outlaw {Jose Wales}
Jose Wales
%set movie “The Outlaw $outlaw”
The Outlaw Jose Wales
%

Commands Command Results

Brackets are very different from the quote and braces. Brackets allow execution of commands, rather
than provide a grouping function. Commands inside the brackets get evaluated and executed, with any
results being passed back into the calling line function. Note that the Tcl parser treats entire lines as a
command group, with any nested brackets getting executed and evaluated first.

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly14

set mystring {Paint Your Wagon}
set line_length [string length $mystring]

%set mystring {Paint Your Wagon}
Paint Your Wagon
%set line_length [string length $mystring]
16
%

Commands Command Results

Programming tip: grouping occurs before substitution. The Tcl parser groups first, then executes or
substitutes variables.

3.2 Global Variables

Contrary to conventional C/C++ programming, variables defined at the top level of a Tcl program are
not accessible inside procedures without defining them again in the procedure as a global variable. This
annoying feature can cause programmer frustration and countless hours of debugging.

To reference a global variable within a procedure, declare the variable as global inside the procedure.
Declaring a global variable at the top level of the Tcl program does nothing.

proc setit { myvar } {
global mystring
set mystring $myvar

}
proc printint {} {

global mystring
echo “mystring is: $mystring”

}

%setit {Pale Rider}
Pale Rider
%printit
my string is: Pale Rider
%

Commands Command Results

In this example, the setit procedure sets the global variable to a string. The printit routine accesses
the global variable and prints it to the screen.

Programming tip: global variables work differently when compared to C/C++ and should always be
declared with the global command inside a procedure.

3.3 Strings and Lists

In Tcl, everything is evaluated as a string. For example, any mathematical operations require the expr
command to do the actual math operation with the resulting value from the expr command formatted
back into a string. Strings are the basic element in Tcl, and there is a multitude of commands to
manipulate and evaluate strings. The string command has an array of operations that can be used to
manipulate strings. For comparing strings, the most reliable command to use is the string compare
function.

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly15

3.4 Line Termination

Line terminations are sometimes necessary in helping the Tcl parser understand how to interpret the
command. The line termination command is a semi-colon, “;”. An example of using line termination is
shown in the following example.

DCSHell-t> set bar [expr 3 * 4] # test
mult
Error: wrong # args: should be “set varName
?newValue?”
 use error_info for more info. (CMD-013)

% set bar [expr 3 * 4] ;# test multiply
12

Causes Error in the Tcl Parser Doesn’t Break Tcl Parser

In this example, a line termination character is required to signal the Tcl parser that the following could
be interpreted as another line or operation. Otherwise, the comment character and following string will
be interpreted as another argument to the set command. This yet another annoyance in using the Tcl
language due to the limited parser and the error message will be cryptic.

Programming tip: put a semi-colon before the comment character (i.e. ;#). This eliminates a lot of
debugging headaches and doesn’t hurt Tcl code execution.

3.5 Oddities of Conditionals and Braces

If you are used to a Kernighan and Ritchie programming style, then the if/elsif/else programming
constructs in Tcl won’t cause you too many headaches. When doing conditional programming in Tcl,
the parser must see a specific brace structure for the else condition or it will complain and die with a
cryptic warning.

In the left example, the beginning brace “{“ in the if construct is moved to the second line. This will
break the Tcl parser. The correct construct is shown on the right.

set death_valley 1
if {$death_valley == 1}
{
 echo “death_valley was set to 1\n”
}

set death_valley 1
if {$death_valley == 1} {
 echo “death_valley was set to 1\n”
}

Incorrect Brace Position for If Construct Correct Bracing for If Construct

The Tcl parser in Design Compiler will complain with a very cryptic warning:

Error: wrong # args: no script following “$death_valley == 1” argument
 use error_info for more info. (CMD-013)
Error unknown command ‘
 echo “death_valley was set to 1\n”
‘ (CMD-005)

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly16

Holy cow! The error message was long and not very informative to the fact that the beginning brace
“{“ is on the next line following the if statement instead of on the same line. At least Design Compiler
provided an error_info command to dump out more info that can be useful for tracing out nasty syntax
errors. However, even the error_info command won’t tell you exactly what went wrong on the
previous example.

The same problem goes for the elsif and else conditionals. If the braces aren’t in the right spot, the
Tcl parser will fail.

set death_valley 1
if {$death_valley == 1} {
 echo “death_valley was set to 1\n”
}
else {
 echo “death_valley was set to 0\n”
}

set death_valley 1
if {$ death_valley == 1} {
 echo “death_valley was set to 1\n”
} else {
 echo “death_valley was set to 0\n”
}

Incorrect Brace Position for else Construct Correct Bracing for else Construct

In the example on the left, the error message was less verbose and still vague:

Error: unknown command ‘else’ (CMD-005)

Design Compiler didn’t even offer you an error_info message for this error. Just remember that the
Tcl parser is somewhat limited due to the nature of how it works on lines rather than multiple lines and a
command separating character like other languages. Where you put the braces matters in the Tcl
parser.

Programming tip: put the beginning braces of the condition at the end of the line containing the
conditional declaration, put any ending braces from the previous condition at the beginning of the next
line.

4.0 The Ugly: Synopsys-specific Implementations of Tcl
There are items that are needed for synthesis and general functionality, but are handled in an odd
method through the Tcl language. Here are some of the weird items of using Synopsys that need more
explanation and examples than what the documentation contains.

4.1 Collections

Collections are not part of the Tcl core language. Collections are Synopsys-specific programming items
that allow attributes of a Synopsys-specific item to be grouped into a single variable reference, using
similar Object Oriented Programming concepts to C++ where different items can be grouped together
in a class-like element. Synopsys commands generally return a list of collections rather than a string or

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly17

list. This is important to know, since collection items need to be operated on differently than strings or
lists.

Collections are referenced as a string handle and cannot be operated on like a list. Instead, Synopsys-
specific commands such as add_to_collection, foreach_in_collection, and remove_collection
allow operations on the collections. For example, if a design had three input ports, clk, rst_n, and
capture, the all_inputs command returns a collection not a list. To access each item, collection
commands must be used.

% set in_list [all_inputs]
{“clk”, “rst_n”, “capture”}
% set item0 [lindex $in_list 0]
{“clk”, “rst_n”, “capture”}
% set foo
{“clk”, “rst_n”, “capture”}
%

% set in_list [all_inputs]
{“clk”, “rst_n”, “capture”}
% set item0 [index_collection $in_list 0]
{“clk”}
% set item0
{“clk”}
%set port_name [get_object_name $item0]
clk
% set $port_name
clk

Incorrect Method of Accessing Collections Accessing Collections Correctly

In the left example above, the all_inputs command returns a collection, not a list and cannot be
accessed like a list. Notice that the variable item0 is set with the collection results, rather than the first
item in the collection (or the 0th element). In the right example, the index_collection is used to get at
the 0th element of the collection that just happens to be the clock pin. Unfortunately, the item0 variable
is also a collection, so the extra step of assigning the port_name variable must incorporate the
get_object_name command on the collection variable item0.

Programming tip: accessing collections requires the use of the special procedures or flag options.
Collections are not Tcl lists!

4.2 Attributes

Another important item to remember about collections are that there are many Synopsys-defined
attributes that get “attached” to the items in a collection. Attributes help define the item with special
synthesis information that Design Compiler can utilize. Attributes are grouped into the following
categories:

cell clock design
library net pin
port read_only reference

List of Synopsys Attributes

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly18

Some attributes are read-only and set/reset by Design Compiler for informational purposes. Some
attributes may be set by the user using the set_attribute command. The user can also create his/her
own attributes which can be helpful for tagging items with more information. In the following example,
the reset_name variable is set with a user-defined attribute called is_reset.

set reset_name “sysrst”;
echo "#RESET-Info: Setting reset attributes on port - $reset_name";
remove_driving_cell $reset_name;
set_ideal_net $reset_name;
set_drive 0 $reset_name;
set_false_path -from $reset_name;
set_attribute $reset_name is_reset true -type Boolean;

Using the set_attribute Command

This is a simplified example of setting up a reset port on a design with synthesis parameters and a user
attribute of Boolean type. This attribute can then be used within the synthesis job to so we can handle
the synthesis constraints differently for reset pins.

Programming tip: doing a “man attribute” in Design Compiler will list all Synopsys-defined attributes
that can be utilized.

4.3 Accessing Collections and Attributes

Synopsys has provided access to the contents of collections through the use of sort_collection,
filter_collection, and foreach_in_collection operations. Some commands can optionally pass a –
sort or –filter command with an argument to further sort or filter on specific items. The following
shows an example of finding a specific cell using the filter_collection command:

filter_collection [get_cells *] “ref_name == FD1S” ;# find flops called FD1S
in design

Using the filter_collection Command

The –filter option in commands acts much like the filter_collection command and can be used in
a variety of situations. For example, to find all cells in the design that are not mapped, the following
command can be used.

set unmapped_cells [get_cells -filter {@is_unmapped == true} "*"];

Using the –filter Command

We can also reference the user-defined attribute, is_reset, using the -filter command as well:

set clk_ports [get_ports -filter {@is_clock == true} "*"];

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly19

set rst_ports [get_ports -filter {@is_reset == true} "*"];

Filtering for User Attributes

The foreach_in_collection command is useful for looping through all of the collection items and
operating on each item set within a collection. A useful procedure to count the number of cell instances
using the foreach_in_collection command is shown below.

proc P_proj_cell_cnt {} {
 set leaf_cell "";
 set cell_list_ptr [filter [find -hier cell "*"] "@is_hierarchical == false \
 && @ref_name != \"**logic_0**\" && @ref_name != \"**logic_1**\""];
 foreach_in_collection entity $cell_list_ptr {
 set cell_name [get_object_name $entity];
 lappend leaf_cell $cell_name;
 }
 return [llength $leaf_cell];
}; # end P_proj_cell_cnt

Counting Cells Example

In this example, the cell_list_ptr variable gets set to a collection of cells that aren’t hierarchical or
VSS/GND pins. Note that the wildcard character “*” is used to grab all of the cells in the find –hier
command and the use of special operators in the filter command for determining reference names and
if the value is a hierarchical reference name. The foreach_in_collection command operates on the
collection and steps through each element in the collection and sets the variable cell_name with the cell
name using the get_object_name command. The leaf_cell variable gets appended with the cell name,
causing the variable to set like a list of items. Finally, the llength command counts the number of items
in the list (really cell instances) in the leaf_cell variable and returns this number as the final cell count.

4.4 Collections Gotchas

In DCSH programming, it was easy to take a list of items and subtract elements or another list from the
first list. For example, a list of all inputs without the clock inputs could be done with the following
command:

in_list = all_inputs() - all_clocks()

DCSH to Get Just Input Signals Without Clocks

In the DCSH example above, getting just the input signals of a design without the clocks was easy to do
by issuing the all_inputs() command and subtract the all_clocks() result from it. In Tcl, the
returned argument for commands such as all_inputs or all_clocks is a collection. Unfortunately,
Design Compiler or PrimeTime has no single command to add or subtract collections from each other.
Instead, one must operate on the elements within a collection individually and work with each element to

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly20

add or subtract into another collection using the add_to_collection or remove_from_collection
commands.

Doing the dsch example with Tcl in Design Compiler or Primetime isn’t as easy since both returned
values are collections and now we have to remove a collection from a collection. Here would be the
equivalent commands in Tcl:

set in_list [all_inputs]
foreach_in_collection element [all_clocks] {

set in_list [remove_from_collection $in_list [get_object_name $element]]
}

Removing a Collection Within a Collection

In the example above, the in_list variable set by the all_inputs command is really a collection, not a
list. The second command iterates over the collection returned by the all_clocks and allows access to
each item within the collection. Note that each item in the collection, referenced by the element
variable, is also a collection. The script then removes that collection item from the in_list using the
remove_from_collection command, accomplishing the removal of the clock pins from our input pins of
the design.

Programming tip: Use the add_to_collection and remove_from_collection commands when adding
or removing items within a collection. Collections are not lists!

4.5 Synopsys-specific Commands Which Cause Tcl Torture

In 2000.05, setting variables on the command line of dc_shell using the –x facility must be Tcl-based,
rather than DCSH-based. For example:

dc_shell –x “G_LIB_NAME=lsi10k” dc_shell –x “set G_LIB_NAME lsi10k”

Supported in 1999.10 Newer method for 2000.05

Another item that deviates from the Tcl language is the use of UNIX style arrow redirection. Synopsys
versions past 1999.10 do not support redirection. Instead, the redirect command must be used to
pass any Synopsys specific commands into a file.

report_cell > cell.rpt redirect cell.rpt {report_cell}

Supported in 1999.10 Newer method for 2000.05

Here is an example of using redirect to a null device similar to doing a “> /dev/null” in UNIX.

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly21

global G_TOPS;
set G_TOPS(NULL) {/dev/null}; # add elem NULL to global array
set G_TOPS(TMP) {/tmp/tops}; # add elem TMP to global array
…
If port does not exist, send warning results to bit bucket
redirect $G_TOPS(NULL) \
{set test4rst [get_ports -filter {@port_direction == in} $reset_name]};

Using the redirect Command

In this example, a global variable called G_TOPS (we use a G_ prefix to signify a global variable which
aids in debugging and code readability) is set as an array with the NULL element set to /dev/null and
the TMP element pointing to /tmp/tops. The redirect command puts the output caused by the set
command of the results of the sub-executed get_ports command to /dev/null.

Getting the licenses used causes some extra Tcl code due to a feature in Synopsys 1999.10 and
2000.05 where the list_licenses procedure returns a text string that cannot be set into a variable.
Instead, some torture in Tcl code is required:

exec touch [eval pid].tmp;
exec rm -rf [eval pid].tmp;
redirect [eval pid].tmp {list_licenses};
set licenses [exec cat [eval pid].tmp];
exec rm -rf [eval pid].tmp;

exec, redirect and eval Example

In the above example, a temporary file is created using the current process ID (pid) of the dc_shell
program. The temporary file is first touched, then removed, and then set with the output of the
list_licenses command. The licenses variable is then set with the contents of the temporary file.
Finally, the temporary file is removed. Note that there is a double-nested bracket declaration for the
eval and the external cat commands.

Programming tip: discontinue any redirect usage using the UNIX-style > command. It is not
supported in 2000.05 and beyond. Some commands aren’t variable-friendly, so redirection to a
temporary file and then back into a variable may be required to get Synopsys command output into a
variable.

5.0 Items For Enhancement
Here’s list of some items that could be fixed or added to the Tcl interface that would aid debugging and
synthesis operations.

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly22

1. Fix commands like list_licenses, report_constraint, etc to return string values that
can be assigned to a variable rather than text output to the Design Compiler console. To get
around this problem the Tcl-tortured user must use the redirect command to stuff the
Synopsys (broken) command output to a temporary file and then suck the output back into a
variable from the file. All this could be fixed by allowing the output to be set to a Tcl variable.

2. A built-in Tcl debugger. Design Compiler and Primetime needs a command line driven
debugger much like the Perl debugger. A nice graphical debugger in Design Vision would be
another good idea. The ability to single-step through sections of code and evaluate variables
would be extremely helpful to overcome Tcl torture.

3. Inclusion of Tk into the Design Compiler application. Custom GUI’s or enhanced API’s
would be a huge benefit for monitoring and control of synthesis jobs. Synopsys did not integrate
Tk into the Design Compiler application which is somewhat like providing a great bottle of wine
without a decent wine glass to put it in: you can drink out of the bottle, but it isn’t very elegant
and the etiquette value is horrible. The Tcl language is not complete without Tk!

4. Ability to show commands being executed from a procedure in the Design Compiler
console. Commands executed in a Tcl script or through a source command show up, but they
don’t in a procedure. This hinders the ability to debug or keep a log of commands executed.

5. Ability to easily add or subtract collection elements, such as the following syntax:

in_list = expr [[all_inputs] – [all_clocks]]

This would be make programming constructs much easier and eliminate a lot of Tcl code to
iterate or index through the collections.
6. Adding a –example option to the define_proc_attributes command. Only one –info
option isn’t enough for complete documentation of a procedure.

6.0 Useful Miscellaneous Tcl Examples
The TOPS synthesis environment uses many procedures and operations to create an easy, powerful,
synthesis environment that can be easily configured to meet the project requirements. Here are some
useful examples extracted from the TOPS Tcl code.

6.1 Including Procedures and Scripts

In the main TOPS Tcl script, there is the requirement to source particular Tcl code if the script exists in
the specified search path. This option is used for over-riding the main functions, such as setting up
clocks or changing compile strategies, on the design unit being synthesized. If a compile script exists
locally, use that one rather than the main compile strategy. To accomplish this, we utilized a procedure
to check if the script exists and then source the script if it is found. The procedure also prints a
timestamp and the invoking script’s name to the console that is useful for debugging or history logging.

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly23

###
Usage: P_source_if_exists filename caller
#
This procedure is used to see if a file exists. If it doesn't, return a zero.
caller added to print invoking script's name
###
proc P_source_if_exists {filename caller} {
 if {[which $filename] != ""} {
 set LOCAL_TIME_MARK [clock seconds];
 set full_name [which $filename];
 echo "#$caller: Sourcing $full_name";
 # Source the file in the top-level context
 uplevel source $filename;
 return 1;
 } else {
 # File was not found
 return 0;
 }
}; # end P_source_if_exists

P_source_if_exists Procedure

6.2 Get License Procedure

To be user friendly and not consume licenses unnecessarily, this procedure is used to check out specific
licenses. The procedure will wait for up to an hour, checking at 60 second intervals if a license cannot
be obtained. This procedure also fixes a flaw in Design Compiler where the get_license command will
return an error status if Design Compiler already has the license.

###
Usage: P_get_license HDL-Compiler
#
This procedure grabs the specified license. Note that DC gives error
status if we already have the license. Hence, must determine if we
do have the license first before we actually get it.
Also re-check for the license in 60 second intervals for
1 hour before we exit with an error if we can't get a license.
###
proc P_get_license {ln} {
 set fetch_license 1;
 set sleep_val 60; # sleep in seconds we wait for a license
 set max_timeout 60; # number of 60-second waits until we die
 # First must determine which licenses we have. To do this
 # we get the output of list_licenses into a TCL variable.
 #
 # Hack! DC is broke & can't set list_lic output to a variable,
 # so must stuff it to a tmp file & read it back in. Use process
 # id (pid) in filename as a safer-alternative, touch & rm -rf to
 # first to be extra safe. Bad Synopsys! Bad Synopsys!
 exec touch [eval pid].tmp;
 exec rm -rf [eval pid].tmp;
 redirect [eval pid].tmp {list_licenses};
 set licenses [exec cat [eval pid].tmp];
 exec rm -rf [eval pid].tmp;

 # now that we have a TCL variable with the list_license output,
 # strip out the crud that DC uselessly puts in and parse the list

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly24

 regsub {Licenses in use:} $licenses {} licenses;
 foreach checkedout_license $licenses {
 if [string match $checkedout_license $ln] {
 set fetch_license 0;
 }
 }
 if {$fetch_license == 1} {
 set sleep_time 0;
 set dc_status [get_license $ln];
 while { ($dc_status == 0) && ($sleep_time < $max_timeout) } {
 if {$sleep_time == 0} {
 set current_time [exec date];
 echo "#INFO: waiting for license $ln @ $current_time";
 }
 sh sleep $sleep_val;
 set sleep_time [expr $sleep_time + 1];
 set dc_status [get_license $ln];
 }
 if {$dc_status == 0} {
 echo "Error: Cannot get license $ln after $sleep_time seconds, dying!";
 return 0;
 } else {
 #echo "#INFO: checked out license $ln";
 return 1;
 }
 } else {
 #echo "#INFO: already have license, continuing along";
 return 1;
 }
}; # end P_get_license

The P_get_license Procedure

6.3 Reading Verilog, VHDL, and Sub-Functional Block Procedures

Our design environment is a mix of Verilog and VHDL. We also utilize top-down as well as bottom-up
compiling strategies. To minimize the license usage for both languages and deal with top-down
compiling strategies, these procedures are used.

proc P_read_vhdl {filename {libname default}} {
 P_get_license "VHDL-Compiler";
 if {$libname == "default"} {
 analyze -f vhdl $filename;
 } else {
 analyze -library $libname -f vhdl $filename;
 }
 remove_lic "VHDL-Compiler";
}; # end P_read_vhdl;

The P_read_vhdl Procedure

proc P_read_verilog {filename {libname default}} {
 P_get_lic "HDL-Compiler";
 if {$libname == "default"} {
 analyze -f verilog $filename;
 } else {
 analyze -library $libname -f verilog $filename;

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly25

 }
 remove_lic "HDL-Compiler";
}; # end P_read_verilog;

The P_read_verilog Procedure

proc P_read_subfubs {subfubs {libname default}} {
 global G_SRC_PATH;
 # Check if any subfubs to read. If none, exit else process list;
 if {![string match $subfubs ""]} {
 set subfub_list [join $subfubs]; # must join it into list first;
 echo "SUBFUBS: $subfub_list";
 # Now parse out each file;
 foreach {subfub} $subfub_list {
 set dirpath [file dirname $subfub]; # get directory path first;
 # No directory, use $G_SRC_PATH
 if {[string match $dirpath ""] == 1} {
 set subfub [file join $G_SRC_PATH $subfub];
 }
 switch -exact -- [file extension $subfub] {
 .vhd {
 if {$libname == "default"} {
 P_read_vhdl $subfub;
 } else {
 P_read_vhdl $subfub $libname;
 }
 }
 .vhdl {
 if {$libname == "default"} {
 P_read_vhdl $subfub;
 } else {
 P_read_vhdl $subfub $libname;
 }
 }
 .v {
 if {$libname == "default"} {
 P_read_verilog $subfub;
 } else {
 P_read_verilog $subfub $libname;
 }
 }
 .db {
 echo "#INFO: Reading db $subfub";
 read_db $subfub;
 }
 default {
 echo "#INFO: Reading db $subfub";
 read_db $subfub;
 }
 }; # end switch
 }; # end foreach
 }; # end if
}; # end P_read_subfubs;

The P_read_subfubs Procedure

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly26

6.4 The Insert Buffer Script

On a design project, we had to fix hold violations manually rather than letting Synopsys go through an
incremental compile with the set_fix_hold command. We accomplished this task with a procedure to
find any hold time violations using the report_constraint command, get all end-point violations, and
then add in a cell of the user’s choosing (usually a buffer) to the end of the violated path. The procedure
requires the user to pass in the cell type to be inserted, an instance name to call the cell, and the place to
be inserted (scan path, data path, or both paths). This obviously isn’t the preferred methodology to fix
hold time violations, but it worked well to get the design out of the proverbial fire and provided a good
example of the power of using Tcl in synthesis. Credit goes to Doug Hergatt and Tim Wilson for the
script example.

###
Usage: P_proj_insert_buffers lib_cell_name inst_string fix_hold_mode
#
This procedure is used to fix HOLD violations by inserting strategic
buffers in the scan, data or both paths of the design. It is intended
to be invoked pre-layout to reduce the number of violations.
###

proc P_proj_insert_buffers {lib_cell_name inst_string fix_hold_mode} {

 # Generate list of violators & filter on VIOLATED
 # Hack! Must dump this to a tmp file because the report_constraint
 # command output can’t be set to a variable! Bad Synopsys! Bad Synopsys!
 redirect tmp { report_constraint -min_delay –all };
 set violator_list [exec sed -n -e "/VIOLATED/p" tmp];
 sh rm tmp;

 # Check for no violations
 if {$violator_list == ""} {
 echo "#INFO: No MIN violations in current design";
 return;
 }; # end if

 set si_violator_list "";
 set d_violator_list "";

 # Now filter on "/SI" & create list
 foreach violator $violator_list {
 if [string match */SI $violator] {
 set si_violator_list [concat $si_violator_list $violator];
 }; # end if
 if [string match */D $violator] {
 set d_violator_list [concat $d_violator_list $violator];
 }; # end if
 }; # end foreach

 # Build the list to fix
 if {$fix_hold_mode == "scan"} {
 set all_violator_list $si_violator_list;
 } elseif {$fix_hold_mode == "data"} {
 set all_violator_list $d_violator_list;
 } elseif {$fix_hold_mode == "both"} {
 set all_violator_list [concat $d_violator_list $si_violator_list];
 } else {
 echo "ERROR: Incorrect Fix Hold Mode. Please specify scan, data or both";

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly27

 }; # end if

 # Reset cell counter (used to create a unique instance name
 set cell_cnt 0;

 echo "#INFO: Fixing Hold violations on the violator paths.";

 # Fix all the violations for the violator list
 foreach reg_cell $all_violator_list {

 # Get the instance name of the violator
 regexp {(.*)/.*} $reg_cell var1 var2
 set inst_name [file tail $var2];

 # Get the hierarchy path to the violating register
 regexp {(.*)/.*} $var2 var1 hier_path

 # Increment the cell counter
 set cell_cnt [expr $cell_cnt + 1];

 # Find everything connected to the pin of this register
 set orig_net [all_connected [get_pins $reg_cell]];
 # Create new instance name (HOLD delay cell)
 set new_cell ${inst_name}${inst_string}${cell_cnt};
 # Create new net name (net inserted between new HOLD cell & register pin)
 set new_net ${new_cell}_net;

 # Disconnect the orig net & create the new cell & net
 disconnect_net $orig_net $reg_cell;
 create_cell -instance $hier_path $new_cell $lib_cell_name;
 create_net -instance $hier_path $new_net;

 # Add the hierarchy path to the new net & cell vars
 set new_net [file join $hier_path $new_net];
 set new_cell_in [file join $hier_path ${new_cell}/A];
 set new_cell_out [file join $hier_path ${new_cell}/O];

 # Connect the nets
 connect_net $new_net $reg_cell;
 connect_net $new_net $new_cell_out;
 connect_net $orig_net $new_cell_in;
 }; # end foreach

 echo "#INFO: Added $cell_cnt HOLD cells to the design.";
}; # end proc

document the procedure!
define_proc_attributes P_proj_insert_buffers \
 -info "PROJ: Procedure to fix HOLD violations inserting strategic buffers" \
 -define_args {
 {lib_cell_name "Library Cell Name to insert" lib_cell_name string required}
 {inst_string "Instance String to insert in the new cell" inst_string string
required}
 {fix_hold_mode "Fix Hold Mode: scan, data, or both" fix_hold_mode string
required}
}

P_proj_insert_buffers Script Example

SNUG Boston 2000 Tcl: The Good, The Bad, and The Ugly28

7.0 Conclusion
Tcl is a very powerful language that enhances the synthesis tasks. Tcl does have quirks and oddities in
its usage and syntax that conflict with more mainstream programming languages. In addition, the
Synopsys-specific Tcl features create some confusion in implementing Tcl. This paper hopefully has
shown some of the major pitfalls that even experienced programmers face and it has provided real-
world example code.

The TOPS synthesis environment was a joint effort by Gregg Lahti, Steve Brown, Tim Wilson, Rodney
Pesavento, and Doug Hergatt (CX Design). This paper couldn’t have been accomplished without the
monster-sized effort from Doug. Doug’s expertise in design and synthesis provided great insight into
solving many of the basic problems faced when the TOPS synthesis environment was created. He was
also the voice of sanity and reason when we couldn’t agree on methodology or direction.

8.0 Reference
Ousterhout, John K., Tcl and the Tk Toolkit, Addison-Wesley, 1994. ISBN: 020163337X

Welch, Brent B., Practical Programming in Tcl & Tk, Second Edition, Prentice Hall, 1997. ISBN 0-
13616830-2

Nelson, Christopher, Tcl/Tk Programmer’s Reference, Osbourne/McGraw Hill, 2000. ISBN 0-07-
212004-5

Tcl Developer Exchange Website: http://ajubasolutions.com

Synopsys Solvnet Website: http://solvnet.synopsys.com/cgi-bin/ASP/solvnet/sign-on

Wilson, Tim L, and Pesavento, Rodney, Using Tcl to Implement an Efficient Synthesis Environment
(TOPS), Boston Synopsys Users Group Conference, September 2000

